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ENERGY OF FORMATION

eterogeneous ice nucleation

Important to understand ice cloud formation and dynamics for global climate
models or rain seeding applications ("geoengineering”)

Homogeneous ice nucleation at -40°C ; mixed ice and water clouds form at -15°C
Nucleation catalyzed by a foreign solid surface (e.g. aerosol particle)
Interpretation of experiments typically with classical nucleation theory

Challenging to study atomistic details of ice nucleation on active sites
both experimentally and computationally!
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Kiselev, et al., Science, 355, 367 (2017),
Heterogeneous ice nucleation on K-rich
Feldspar particles



Which surfaces promote ice crystal formation effectively?

Depends on surface morphology (crystal structure, confined geometries) and chemistry (hydrophilicity)

For atmospheric ice nucleation: organic aerosol, microorganisms, mineral dust particles, ...

Molecular Dynamics simulations, at different levels of accuracy, can help understand / predict ice nucleation ability

* For many systems, time scale of nucleation is too long for unbiased MD -> seeded MD or enhanced sampling

Quantum chemistry TIP4P/ice all-atom Monatomic water (mW) potential
tential
 “afew” H,0 po N o
molecules ~ 1000 H,0 molecules 100 000 ‘H,0’ molecules

* Very short or no
time evolution
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Heterogeneous ice nucleation on silver iodide particles

(a) Ice |h, basal plane
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(b) 3-Agl (0001) surface
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* Silver iodide has been used as a rain seeding agent for decades
 Lattice mismatch between 3-Agl (0001) and Ice Ih (0001) is only 2%
* Ice nucleation can be observed in unbiased molecular dynamics
 (0001) is a polar surface! Defects and reconstructions should be

common!
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Simulation details

Classical force field, Lennard Jones and Coulomb pair potentials:
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* All Ag and | ions fixed to bulk positions
* H,0 modeled with TIP4P/ice potential [1]
 Agl-H,0 interactions by Hale and Kiefer, originally fitted to ST2 water [2]
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* GROMACS version 5 MD code (single precision), NVT (or NpT) ensemble

e Timestep At=2fs

* Nosé-Hoover thermostat, T = 0.4 ps

* Lennard-Jones and real-space electrostatics cut-off r. = 8.5 A (from TIP4P/ice)
* Long range electrostatics from particle-mesh Ewald scheme (PME)

* H,0 molecule rigid geometry enforced with SETTLE algorithm

* 3D periodic boundary conditions

[1] J. L. F. Abascal, E. Sanz, R. G. Fernandez, and C. Vega, J. Chem. Phys. 122, 234511 (2005).

[2] B. N. Hale and J. Kiefer, J. Chem. Phys. 73, 923-933 (1980).
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Agl (0001) has Tasker type 3 dipole: simulation setup?

[0001]

[1000] — >

All simulations carried out
with “mirror image slab”
setup (d) in order to cancel
dipole fields

OW number density (nm=3)

100

80

60

40

20

(b)

Si'ngle slab and water in NPT (a)'

Single slab with separated water films in NVT (b)
Mirror image slabs with separated water films in NVT (c)
Mirror image slabs with one water film in NVT (d)

1 2

3 4 5 6

Distance from surface (nm)

—~~

—

A
N

Dipole moment projection along z (D)

15

i
£f
i |

Single slab with separated water films in NVT (b) ———
Mirror image slabs with separated water films in NVT (c)
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Agl (0001) hydration layer structure and dynamics
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lce nucleation rates from MD simulations at T = 263 K
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* 10 independent simulations per system,
* Nucleatoin rates from fit to Py, from P“q(t) = exp[—-(Rt)"]
induction times in MD simulations



Effect of defects on ice nucleation on Agl (0001) surfaces

Distance from lower terrace (A)
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Different systems

Nucleation rate on perfect surface scaled by accessible surface area
predicts nucleation rates from MD on surfaces with defects well!




Atomistic details of ice growth mechanisms

(a) Perfect surface
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Summary and Outlook

Ice nucleation on Ag-terminated Agl (0001) surfaces with defects

Single vacancy Double vacancy Terrace Pit Step edge [100] Step edge [210]

Similar to perfect surface
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@ Surface H,O structure: @ Cubic ice @ Hexagonal ice o Interfacial Liquid

* Nucleation rate can be explained by simple model where rate on perfect surface is scaled by effective surface
area available for ice nucleation in defect systems, but model fails to explain atomistic differnces
* |deal ice growth is slowed down by stochastic appearance of stacking disorder between ice |h and Ic, which is

increased by some defects
* Problem of the polar surface remains! Now considering more realistic surfaces with reconstructions that

eliminate/reduce dipole!



Agl (0001) with (5x5) surface reconstruction

Number of
Ag*ions in
the 5x5
supercell
surface

* In each (5x5) supercell, Ag and | ions have been moved from the top to the bottom of the slab to cancel the dipole
e Based on work on polar ZnO (0001) surfaces: Mora-Franz et al., Chem. Mater. 29, 5306 (2017).
* No nucleation after 250 ns at T = 253 K -> seeded MD simulations or enhanced sampling necessary!
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