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Efficient model-based retrieval of aerosol properties from 
composition-resolved thermal desorption measurements

Zefluor® (Pall):
PTFE membrane,
2 µm pore size

Schobesberger et al., Atmos. Chem. Phys., 2018 (doi: 10.5194/acp-18-14757-2018)
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Efficient model-based retrieval of aerosol properties from 
composition-resolved thermal desorption measurements

Peak position in principle a function of vapor 
pressure (~C*) and vaporization enthalpy (ΔH)

~vapor pressure at room temperature

enthalpy of vaporization

factor (< 1) to account for vapor-surface interactions, 
in particular PTFE filter (assumed constant here)
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Efficient model-based retrieval of aerosol properties from 
composition-resolved thermal desorption measurements

Peak position in principle a function of vapor 
pressure (~C*) and vaporization enthalpy (ΔH)

E.g.:

C* (µg m–3) ΔH (kJ mol–1)
0.25 60
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Efficient model-based retrieval of aerosol properties from 
composition-resolved thermal desorption measurements

Peak position in principle a function of vapor 
pressure (~C*) and vaporization enthalpy (ΔH)

E.g.:

C* (µg m–3) ΔH (kJ mol–1)
0.25

1 × 10–3

5 × 10–5

0.02

60

120
133
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Efficient model-based retrieval of aerosol properties from 
composition-resolved thermal desorption measurements

Fit by Mohr et al.
(GRL, 2017)

Experimental Tmax

DH = 131 – 11 log10(C*)
(Epstein et al., EST, 2009)

Tmax vs. C*
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Efficient model-based retrieval of aerosol properties from 
composition-resolved thermal desorption measurements

Fit by Mohr et al.
(GRL, 2017)

Experimental Tmax

DH = 131 – 11 log10(C*)
(Epstein et al., EST, 2009)

Tmax vs. C*
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Efficient model-based retrieval of aerosol properties from 
composition-resolved thermal desorption measurements

1 h

10 min

x
x10 h x

1 d x
1 w x

1 m
x

1 y

E.g.:

Time (min)

kd (25C) (s–1) EA (kJ mol–1)
2 × 10–6

2e-1 to 5e-5- 60 to 146

92

C* (µg m–3) ΔH (kJ mol–1)

Lifetime = 6 d, Ad = 3 × 1010 s–1 (OK)

x
Times = lifetime at 25 °C

Tmax vs. Edis
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Lopez-Hilfiker et al., ACP, 2015
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Efficient model-based retrieval of aerosol properties from 
composition-resolved thermal desorption measurements

?
Motivation:
• Many individual thermograms should be analyzed.

E.g.: α-Pinene SOA chamber experiment
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Efficient model-based retrieval of aerosol properties from 
composition-resolved thermal desorption measurements

?
Motivation:
• Many individual thermograms should be analyzed.
• Complex thermogram shapes.

Lopez-Hilfiker et al., ACP, 2015

E.g.: α-Pinene SOA chamber experiment
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Step 1 (this time): “robust clustering algorithm” for thermograms
Ziyue Li et al., ACPD, 2019 (10.5194/acp-2019-733)

α-Pinene + OH SOA 
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Step 1 (this time): “robust clustering algorithm” for thermograms
Ziyue Li et al., ACPD, 2019 (10.5194/acp-2019-733)

α-Pinene + OH SOA 
Manual ”expert” fitting results:

Green = sum
Beige = individual parameter sets

(both ”free monomers” and 
from decomposition)



15

Manual “expert” fitting results for weighted-average cluster thermograms: reference

Relative contributions of 
clusters 1-10 (Li et al., 2019):

Freely desorbing “monomers”:

Epstein et al., 2009Lopez-Hilfiker et al., 2014

From decomposition:

Epstein: DH = 131 – 11 log10(C*)
Lopez-Hilfiker: literature-based

Ad values between 5e5 and 3e11 s–1

h d m y



16

Manual “expert” fitting results for weighted-average cluster thermograms: reference
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Manual “expert” fitting results for weighted-average cluster thermograms: reference

Could my (or a) computer do 
that work on its own?
Ø Unattended
Ø Maybe also faster
Ø Better usability?

Also:
Let’s determine upper-limit C*
for decomposing parent 
compounds.

Took me 1-2 work days...
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Automatic thermogram fitting: overall strategy ... piece-wise fitting!

WHY:
• Typically, initial upslope of a thermogram is a tight constraint on DH
• Location in temperature space (of that upslope) then constrains C*0

E.g. cluster #3:

Start with fitting one peak to the initial upslope:



19

Automatic thermogram fitting: overall strategy ... piece-wise fitting!

WHY:
• Typically, initial upslope of a thermogram is a tight constraint on DH
• Location in temperature space (of that upslope) then constrains C*0

E.g. cluster #3:

Start with fitting one peak to the initial upslope:

Identified using a peak finding routine
adapted from “tofTools”.
Includes shoulder detection, based on
O’Haver (et al.)’s work (multiplying 
by derivatives).
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Automatic thermogram fitting: overall strategy ... piece-wise fitting!

WHY:
• Typically, initial upslope of a thermogram is a tight constraint on DH
• Location in temperature space (of that upslope) then constrains C*0

E.g. cluster #3:

Start with fitting one peak to the initial upslope:

C*0 = 0.8 µg m–3

DH = 97 kJ mol–1
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Automatic thermogram fitting: overall strategy ... piece-wise fitting!

WHY:
• Typically, initial upslope of a thermogram is a tight constraint on DH
• Location in temperature space (of that upslope) then constrains C*0

E.g. cluster #3:

Start with fitting one peak to the initial upslope …

C*0 = 0.8 µg m–3

DH = 97 kJ mol–1

• In residual (blue): find next peak
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Automatic thermogram fitting: overall strategy ... piece-wise fitting!

WHY:
• Typically, initial upslope of a thermogram is a tight constraint on DH
• Location in temperature space (of that upslope) then constrains C*0

E.g. cluster #3:

Start with fitting one peak to the initial upslope …

C*0 = 0.8 µg m–3

DH = 97 kJ mol–1

• In residual (blue): find next peak
• Define new fitting region (+ some)
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Automatic thermogram fitting: overall strategy ... piece-wise fitting!

WHY:
• Typically, initial upslope of a thermogram is a tight constraint on DH
• Location in temperature space (of that upslope) then constrains C*0

E.g. cluster #3:

Start with fitting one peak to the initial upslope …

C*0 = 0.8 µg m–3

DH = 97 kJ mol–1

• In residual (blue): find next peak
• Define new fitting region (+ some)

C*0 = 0.06 µg m–3

DH = 101 kJ mol–1

N2:N1 = 0.80

1st peak

2nd peak
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Automatic thermogram fitting: overall strategy ... piece-wise fitting!

WHY:
• Typically, initial upslope of a thermogram is a tight constraint on DH
• Location in temperature space (of that upslope) then constrains C*0

E.g. cluster #3:

Start with fitting one peak to the initial upslope …

1st peakC*0 = 0.8 µg m–3

DH = 97 kJ mol–1

• In residual (blue): find next peak
• Define new fitting region (+ some)

C*0 = 0.06 µg m–3

DH = 101 kJ mol–1

N2:N1 = 0.80
2nd peak



Automatic thermogram fitting: overall strategy ... piece-wise fitting!

WHY:
• Typically, initial upslope of a thermogram is a tight constraint on DH
• Location in temperature space (of that upslope) then constrains C*0

E.g. cluster #3:

Start with fitting one peak to the initial upslope …

1st peak

2nd peak

And so on …

C*0 = 0.8 µg m–3

DH = 97 kJ mol–1

• In residual (blue): find next peak
• Define new fitting region (+ some)

C*0 = 0.06 µg m–3

DH = 101 kJ mol–1

N2:N1 = 0.80



Automatic thermogram fitting: overall strategy ... piece-wise fitting!

WHY:
• Typically, initial upslope of a thermogram is a tight constraint on DH
• Location in temperature space (of that upslope) then constrains C*0

E.g. cluster #3:

Start with fitting one peak to the initial upslope …

DH
(kJ mol–1)

N/Ntot

97
101
123
190

0.36
0.31
0.20
0.12

And so on …
Finishing with a final tweak of 
all C*0 and N (i.e., #(peaks)*2 
free parameters) …

C*0
(µg m–3)

0.9
0.07
4e–4
4e–9



Automatic thermogram fitting: overall strategy ... piece-wise fitting!

WHY:

• Typically, initial upslope of a thermogram is a tight constraint on DH
• Location in temperature space (of that upslope) then constrains C*0

E.g. cluster #3:

Solutions of the routine not unique, but usually (not here) quite similar:

DH
(kJ mol–1)

97

101

123

190

C*0
(µg m–3)

0.9

0.07

4e–4

4e–9

DH
(kJ mol–1)

81

56

14

C*0
(µg m–3)

1.4

0.7

0.5



Automatic thermogram fitting: CMA-ES as optimizer

WHY:
• Flexible regarding topography of objective function (not really required to be known)
• Seems to be performing quite well overall
• Core MATLAB code can be copy-pasted from Wikipedia J

(CMA-ES = Covariance Matrix Adaptation – Evolutionary Strategy)



Automatic thermogram fitting: CMA-ES as optimizer

E.g., cluster #2 initial slope fitting (2 free parameters):

Gen. 1 Gen. 2

Color: fitness of solution 
(dark blue = best, yellow = worst)

Ellipses: covariance function (~ ”search space”)
(thick = current, thin = next)

Gen. 3 Gen. 4 Gen. 5

Gen. 6 Gen. 7 Gen. 8 Gen. 9 Gen. 10

Gen. 11 Gen. 12

Computing time: 4 min
(2013 MacBookPro, 3.1 GHz Core i7, 16 GB 1.9 GHz DDR3)

DH
(k

J 
m

ol
–1

)

log10(C*0 / µg m–3)



Automatic thermogram fitting: CMA-ES as optimizer

E.g., cluster #2 initial slope fitting.

DH
(k

J 
m

ol
–1

)

log10(C*0 / µg m–3)

All in one plot:

Step 1
Computing time: 4 min



Automatic thermogram fitting: CMA-ES as optimizer

E.g., cluster #2 initial slope fitting.

DH
(k

J 
m

ol
–1

)

log10(C*0 / µg m–3)

All in one plot:

1668 runs to explore objective function (cluster #3 actually):

Step 1
Computing time: 4 min



Automatic thermogram fitting: CMA-ES as optimizer

Example topography of objective function: E.g., “wandering off” but making U-turn:

Step 2 (3 parameters)

Step 4
Computing time: 28 min

Here only showing mean results for each generation



Automatic thermogram fitting: CMA-ES as optimizer

Example topography of objective function: E.g., “wandering off” but making U-turn:

Step 2 (3 parameters)

Step 2
Computing time: 9 min

Here only showing mean results for each generation



Manual ”expert” fitting results:

Automatic fitting probably not as good as “manual expert” fitting, but probably close enough (and less biased!?

go
t lo

st#1
0

Automatic fitting results:
52 min 38 min

42 min 24 min 66 min

9 min

Average (n=6): 
40 ± 20 min per thermogram
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Summing up the results: # 1,2, 7, 5: 1 run
# 8, 9: 2 runs
# 6: 4 runs
# 3, 4: 6 runs

Multiple runs for some clusters: 17 2

34

5

8
6

9Abundances:
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Summing up the results: # 1,2, 7, 5: 1 run
# 8, 9: 2 runs
# 6: 4 runs
# 3, 4: 6 runs

Multiple runs for some clusters: 17 2

34

5

8
6

9Abundances:

“Free monomer” region from manual fitting
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Summing up the results: # 1,2, 7, 5: 1 run
# 8, 9: 2 runs
# 6: 4 runs
# 3, 4: 6 runs

Multiple runs for some clusters: 17 2

34

5

8
6

9Abundances:

Lifetime: hdwmy10 y
Ad

1020 s–1

1015 s–1

1010 s–1

105 s–1

1 s–1

“Free monomer” region from manual fitting
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Summing up the results: # 1,2, 7, 5: 1 run
# 8, 9: 2 runs
# 6: 4 runs
# 3, 4: 6 runs

Multiple runs for some clusters: 17 2

34

5

8
6

9Abundances:

Lifetime: hdwmy10 y
Ad

1020 s–1

1015 s–1

1010 s–1

105 s–1

1 s–1

Decomposition region from manual fitting

“Free monomer” region from manual fitting

[Should I constrain Ad when fitting for 
getting more unique solutions?]
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Summing up the results à VBS-style plot

Automatic:Manual:

vs.
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Summing up the results à VBS-style plot

If C*0-DH relationship is assumed known:

Can covert from decomposition lifetimes rough
upper-limit C*0 values for the parent compounds 
(if higher, the compounds would rather 
evaporate than decompose).

Automatic:



Future work:

Ø Try to only allow certain range of Ad?

Ø Try better estimates of “goodness” of fit? (currently minimizing ordinary least squares)

Ø Some work on quantifying “goodness” of fit for multi-peak fitting would speed things up!

Ø Could optimize peak/slope range localization routine (thermograms ≠ mass spectrum!)

Ø More suitable optimization routine than CMA-ES? Or could parameters be set better?

Ø Extend to allow inclusion of isothermal evaporation periods (cf. D’Ambro et al., ACS ESC, 2018)

Ø Apply to datasets!

Conclusions:

• Automatic fitting routine gives sensible solutions, in general, but not always unique.

• It is fast enough to fit dozens of thermograms per day (on my computer).

• Additional experimental results could add constraints on fitting parameters => more accurate results.
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Backup slides
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Red = sum
Beige = individual parameter sets

(both ”free monomers” and 
from decomposition)

a-Pinene
Clusters 1-10
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Values of A (s^-1) I ended up using for now:
cluster 1: n/a
cluster 2: 1.1e7
cluster 3: 7e6
cluster 4: 5e5 (that’s the lowest)
cluster 5: 1e7
cluster 6: 3e11 (that’s the highest)
cluster 7: 5e7
cluster 8: 2e8
cluster 9: 5e8
cluster 10: 1.5e8
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Efficient model-based retrieval of aerosol properties from 
composition-resolved thermal desorption measurements

Lopez-Hilfiker et al., AMT, 2014

Filter Inlet for Gas and AEROsol (FIGAERO)

Heated N2

PTFE membrane 
filter

To TOF mass spectrometer

Ionization by iodide 
adduct formation 
(100 mbar)

X + I– à X.I–


