Coarse-Graining of Aerosol Mixing State Metrics Empowered by Machine Learning

Zhonghua Zheng Advisor: Prof. Nicole Riemer 12/05/2019

Department of Civil and Environmental Engineering

Aerosol Mixing State & Metric

- Aerosol mixing state
 - describes the distribution of aerosol chemical species among particles in a population
- Importance of aerosol mixing state

- Aerosol mixing state index (Riemer & West, ACP, 2013)
 - Range: [0%, 100%]
 - 100% for internally mixed
 - 0% for externally mixed

(Riemer et al., 2019, Reviews of Geophysics)

Impacts of Aerosol Mixing State Index (Quantitative Analysis)

(Curtis, 2019)

How to Get Aerosol Mixing State Index by Modeling? (PartMC as a benchmark)

- Particle-Resolved Model
 - CBM-Z (Gas-Phase)
 - MOSAIC (Aerosol-Phase)

		Particle 1	Particle 2	Particle 3
	вс	10	1	3
	SO4	2	4	8
	ос	9	2	5

(Riemer et al., JGR, 2009, and MOSAIC: Zaveri et al., 2008)

Question: How to Scale up the Mixing State Index at Global Scale?

Solution 1: Numerical Simulation -- WRF-PartMC

- 170 x 160 grid cells
- spatial resolution: 4 km x 4 km
- 2-days simulation
- temporal resolution: 10~20 s
- full particle store every 2 hrs
- 10,000 particles each population

- 10,000 node hours

- 320,000 core hours

(Curtis, 2019)

CEE AT ILLINOIS Department of Civil and Environmental Engineering

Solution 2: Machine Learning enabled coarse-grained modeling

CEE AT ILLINOIS Department of Civil and Environmental Engineering

Department of Civil and Environmental Engineering

PartMC simulations as training data and testing data

Parameters

Environmental Variable Relative humidity (RH) Latitude Day of Year Temperature Gas Phase Emissions Scaling Factor SO₂, NO₂, NO, NH₃, CO, ALD2 HCHO, ETH, OLEI, OLET, TOL, XYL AONE, PAR, ISOP, CH3OH, ANOL, DMS Carbonaceous Aerosol Emissions (one mode) D_{g} $\sigma_{
m g}$ BC/OC mass ratio $E_{\rm a}$ Sea Salt Emissions (two modes) (1) $D_{g,1}$ $\sigma_{\mathrm{g},1}$ $E_{a,1}$ $D_{g,2}$ $\sigma_{
m g,2}$ $E_{\rm a,2}$ OC fraction Dust Emissions (two modes) (1) $D_{g,1}$ $\sigma_{g,1}$ $E_{a,1}$ $D_{g,2}$ $\sigma_{
m g,2}$ $E_{a,2}$ Restart Timestamp (3)

More details

- One third of scenarios without sea salt
- One third of scenarios without dust
- "Restart": use simulation to create simulation
- Overall training samples (800+400+400+200)*25=45,000
- Additional 120*25=3,200 samples for testing the robustness of the ML models

Simulation

- Parallelized and scalable

Objective

- Mixing State Index of submicron aerosols (d < 1um)

(Hughes et al., 2018)

Timestamp

Machine Learning Algorithm: XGBoost

https://towardsdatascience.com/https-medium-com-vishalmorde-xgboost-algorithm-long-she-may-rein-edd9f99be63d https://www.kdnuggets.com/2017/10/understanding-machine-learning-algorithms.html

CEE AT ILLINOIS Department of Civil and Environmental Engineering

CEE AT ILLINOIS

Department of Civil and Environmental Engineering

Infer the possible aerosol populations given the mixing state index

- **1. Designed** a pipeline to conduct 1800 box-model simulations according to the latin hypercube sampling approach
- **2**. **Developed** Machine Learning-enabled **emulator** to estimate aerosol mixing state index at a global scale for CESM
- **3.** Tools for verifying the aerosol assumptions at global scale
- 4. This Machine Learning-enabled workflow can be leveraged to other aerosol research

