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Aerosol Mixing State & Metric

* Aerosol mixing state
- describes the distribution of aerosol chemical
species among particles in a population

% Importance of aerosol mixing state

 Aerosol mixing state index
(Riemer & West, ACP, 2013)
- Range: [0%, 100%)]
- 100% for internally mixed
- 0% for externally mixed

100% 0% 52%
= == == - -| ————— FreE===
| Internal | External | | RealWorld |
Mixture Mixture I Mixture |

|eel '0.' :Oé'
99200200
08 00 80:

Same Mass and Number Concentration

100 nm Diameter =065
Ka i Ifa

50% Ammonium Sulfate CCN Ke:::: u:(; "61 ‘e

50% Hydrophobic Organic Activation Temperature = 288 K

Supersaturation = 0.3%

Different Numbers of Activated Particles

6 Activated 3 Activated 4 Activated

(Riemer et al., 2019, Reviews of Geophysics)
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Impacts of Aerosol Mixing State Index (Quantitative Analysis)
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How to Get Aerosol Mixing State Index by Modeling?
(PartMC as a benchmark)

* Particle-Resolved Model
— CBM-Z (Gas-Phase)
— MOSAIC (Aerosol-Phase)

Particle | Particle | Particle
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(Riemer et al., JGR, 2009, and MOSAIC: Zaveri et al., 2008)
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Question: How to Scale up the Mixing State Index at Global Scale?
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Solution 1: Numerical Simulation -- WRF-PartMC

- 18:00 LS N 100
\ - 170 x 160 grid cells
%0 - spatial resolution: 4 km x 4 km
- 2-days simulation
- temporal resolution: 10~20 s
- full particle store every 2 hrs
- 10,000 particles each population

- 10,000 node hours
- 320,000 core hours
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mixing state parameter ycon %

0
Regional Benchmark Simulation, WRF-PartMC

(Curtis, 2019)
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Solution 2: Machine Learning enabled coarse-grained modeling

X = [Environmental variables,

Training Da?a _ Gas species concentration,
(PartMC box model simulations) Aerosol species concentration]

Y = Aerosol mixing state index

Machine Learning

Algorithm
Global
X = [Environmental variables,
Gas species concentration, f-x->y Aerosol mixing state index
Aerosol species concentration] at global scale

New Data (X)
(from Earth System Models)
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Workflow Sampling

Parameters
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PartMC
' Machine ’
Learning

Aerosol Mixing State Index <:]|
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PartMC simulations as training data and testing data

P More details

i - One third of scenarios without sea salt
e - One third of scenarios without dust
Myey—— - “Restart”: use simulation to create

AONE PAR S0P, I, 01 ANOL, DV simulation

wo - Overall training samples
(800+400+400+200)*25=45,000
P - Additional 120*25=3,200 samples for
testing the robustness of the ML models

e Simulation
- Parallelized and scalable

Objective
e - Mixing State Index of submicron aerosols (d < 1um)
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Machine Learning Algorithm: XGBoost

Bootstrap aggregating or Models are built sequentially Optimized Gradient Boostin
Bagging is a ensemble by minimizing the errors from glgorithm through parallel ]
meta.- .gorlthm comb!nlng previous models while processing' tree-pruning, 4
predictions from mUIt'ﬁle' increasinﬁ.(or boosting) handling missing values and =
decision trees through a influence of high-performing reguérization to avoid o Hes
majority voting mechanism models overfitting/bias sade| dasa
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: Bagging-based algorithm Gradient Boostin
re ?e%reanptglt?gk of W gereg only a subset of employs gradien
osgible e liBanc s features are selected at descent algorithm to

i decision based on random to build a forest minimize errors in
carfain chnditons or coIIect!con of decision sequential models
rees

https://towardsdatascience.com/https-medium-com-vishalmorde-xgboost-algorithm-long-she-may-rein-edd9f99be63d
https://www.kdnuggets.com/2017/10/understanding-machine-learning-algorithms.html
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Mixing state index

Model evaluation 100
Our ML emulator are robust for
the testing dataset! 801
Evaluation metrics Value
X 60
RMSE 0.062 g
c
Mean Absolute Error 0.048 E
Q 40 1
Median Absolute Error 0.037 x
Index of Agreement 0.943
20
Correlation Coefficient 0.893
R2 0.795
% 20 40 60 80 100

Prediction, %
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Apply ML emulator

X
(outputs from CESM FHIST compset) N

ML emulator + —
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x=81%

Mixing State Index
(2011 DJF)

Davis, CA (38.54° N, 121.76° W)
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Infer the possible aerosol populations given the mixing state index

x=81%
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Summary

1. Designed a pipeline to conduct 1800 box-model simulations according to the latin
hypercube sampling approach

2. Developed Machine Learning-enabled emulator to estimate aerosol mixing state index
at a global scale for CESM

3. Tools for verifying the aerosol assumptions at global scale

4. This Machine Learning-enabled workflow can be leveraged to other aerosol research
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