Kinetic modelling of secondary organic aerosol (SOA) formation: connecting the data points

Thomas Berkemeier

Max Planck Institute for Chemistry

Multiphase Chemistry Department

t.berkemeier@mpic.de

IAMA Conference Davis, CA 12/04/2019

Fundamental Secondary Organic Aerosol (SOA) Properties

Koop *et al*. PCCP (2011)

Consequences of SOA Properties

Feedback & Interaction Between SOA Properties

Approach

Interactions of Physical-Chemical Properties of SOA

 $[Z_i]_g \longleftrightarrow [Z_i]_g$

 $[Z_i]_{b2} \longleftrightarrow [Z_i]_{b2}$ $[Z_i]_{b3} \longleftrightarrow [Z_i]_{b3}$ $[Z_i]_{b4} \longleftrightarrow [Z_i]_{b4}$

 $[Z_i]_{bk} \longleftrightarrow [Z_i]_{bk}$

KM-GAP*2.0

dt

 $[Z_i]_{gg}$

Kinetic Multi-Layer Model KM-GAP 2.0

Aerosol Particle: Multiphase Chemical System

Complications for treatment of SOA formation:

- Particle growth leads to imbalance in layer sizes.
- Evolving concentration gradients require high initial layer count.
- Low computational efficiency.

Kinetic Multi-Layer Model KM-GAP 2.0

Aerosol Particle: Multiphase Chemical System

New: Adaptive Layer Splitting and Merging Scheme (size and gradient)

Modelling Strategy for SOA Chamber Experiments

Kinetic Model

Chemical Mechanism (semi-explicit)

Volatility

Key Model Parameters and Global Optimization Algorithm

Model Parameters

MCGA - Global Optimization Algorithm (Inverse Modelling Approach)

T. Berkemeier, M. Ammann, U. K. Krieger, T. Peter, P. Spichtinger, U. Pöschl, M. Shiraiwa and A. J. Huisman, *Atmos. Chem. Phys.*, **2017**

Environmental Chamber Experiments

Georgia Tech Environmental Chamber

12 m³ Teflon bag

Sally Ng

Reaction System

 NO_3 oxidation via injection of N_2O_5

(+)-α-pinene

limonene

Conditions

Instruments

< 5 % RH

 $(NH_4)_2SO_4$ seed

HR-ToF-AMS

Environmental Chamber Experiments

Pure Precursor Experiments – Well-mixed Particle Phase

Mixed Precursor Experiments – Well-mixed Particle Phase

Viscosity-Dependent Modelling Results

HIGH VISCOSITY PARTICLE

(A) SOA formation is not strongly affected by viscous phase state.

(B) Semi-volatile molecules take longer to evaporate / are trapped inside.

Diffusion barrier could increase (C) over time due to crust formation.

low

Viscosity-Dependent Modelling Results – Sensitivity Study

SIMULTANEOUS OXIDATION

Elevated viscosity can explain slow evaporation of SOA

Application of **Stokes Einstein** equation yields viscosity of 10^8 Pa s, typical for α -pinene SOA.

Viscosity-Dependent Modelling Results – Composition-Dependence

Scenarios are indistinguishable with the current set of input data.

LIMONENE SOA

Summary

Secondary Organic Aerosol (SOA) formation from monoterpene precursor mixtures can be described using kinetic multi-layer models, but the gas-phase chemical mechanism has to be simplified.

- 2 **SOA partitioning** can occur as **non-equilibrium process**, either due to **formation of oligomers** or **viscous phase state**.
- 3 **SOA yields** were mostly unaffected by mixing precursors in this study, but **evaporation behavior** was strongly affected.

Oligomerization and diffusion effects are difficult to separate
from looking at SMPS data. There is a need to combine different experimental techniques to solve this puzzle.

 $[Z_i]_g \longleftrightarrow [Z_i]_g$

15

Multiphase Modelling Team

Max Planck Institute for Chemistry, Mainz

Multiphase Chemistry Department

Thomas Berkemeier (t.berkemeier@mpic.de)

Steven Lelieveld, Coraline Mattei, Jake Wilson

