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Fundamental Secondary Organic Aerosol (SOA) Properties 
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Consequences of SOA Properties
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Feedback & Interaction Between SOA Properties
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Oligomerization



Approach

Interactions of Physical-Chemical Properties of SOA

Kinetic Model

microscopic properties

Chamber Experiments

macroscopic observables
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Inverse Modelling



𝑫𝒈

𝜶𝒔

𝑫𝒃𝒌𝒃𝒓

𝒌𝒈

Aerosol Particle:
Multiphase Chemical System

Kinetic Multi-Layer Model KM-GAP 2.0

KM-GAP
(Shiraiwa ACP 2012)
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Complications for 
treatment of SOA 
formation:

- Particle growth leads 
to imbalance in layer 
sizes.

- Evolving concentration 
gradients require high 
initial layer count.

- Low computational 
efficiency. 
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KM-GAP 2.0
(2019)
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Aerosol Particle:
Multiphase Chemical System

Kinetic Multi-Layer Model KM-GAP 2.0

New: Adaptive Layer Splitting and 
Merging Scheme (size and gradient) KM-GAP

(Shiraiwa ACP 2012)
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Modelling Strategy for SOA Chamber Experiments

Kinetic Model Chemical Mechanism (semi-explicit) Volatility

KM-GAP 2.0
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Key Model Parameters and Global Optimization Algorithm

organics

pvap

Volatility basis set Enthalpy of vaporizationGas-phase wall loss rate

kwall

~ 0.25 h-1
pvap

heat

pvap

MCGA - Global Optimization Algorithm (Inverse Modelling Approach)

…

T. Berkemeier, M. Ammann, 
U. K. Krieger, T. Peter, P. 
Spichtinger, U. Pöschl, M. 
Shiraiwa and A. J. Huisman, 
Atmos. Chem. Phys., 2017

Oligomerization rate Viscosity

Model Parameters

8



Environmental Chamber Experiments

Reaction System

NO3 oxidation via injection of N2O5

limonene

Georgia Tech Environmental Chamber

Conditions

< 5 % RH

(NH4)2SO4 seed

Instruments

HR-ToF-AMS

HR-FIGAERO-CIMS

SMPS

12 m3 Teflon bag
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LIMONENE + NO3 A-PINENE + NO3

Model simulations with well-mixed particle phase: 

Reversible oligomerization can explain differences. 

Limonene SOA more oligomerized than α-pinene SOA.

Pure Precursor Experiments – Well-mixed Particle Phase

α-pinene
limonene

1 2
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Mixed Precursor Experiments – Well-mixed Particle Phase

SIMULTANEOUS OXIDATION SEQUENTIAL OXIDATION

Evaporation rate is not reproduced 
in mixed precursor simulations

Is limonene SOA slowing down 
α-pinene SOA evaporation? 

3 4
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Viscosity-Dependent Modelling Results

HIGH VISCOSITY PARTICLE

Color-Coded: Mean Volatility

(A) SOA formation is not strongly 
affected by viscous phase state.

(B) Semi-volatile molecules take 
longer to evaporate / are trapped 
inside.

(C) Diffusion barrier could increase 
over time due to crust formation.

lowhigh
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Viscosity-Dependent Modelling Results – Sensitivity Study

Elevated viscosity can explain
slow evaporation of SOA

Application of Stokes Einstein 
equation yields viscosity of 108 

Pa s, typical for α-pinene SOA. 

SIMULTANEOUS OXIDATION3



Viscosity-Dependent Modelling Results – Composition-Dependence

A-PINENE SOASEQUENTIAL EXPERIMENT: Core-Shell Morphology?

LIMONENE SOA

Constant Diffusivity Oligomerization-Dependent

Scenarios are indistinguishable with the current set of input data.



Summary

Secondary Organic Aerosol (SOA) formation from
monoterpene precursor mixtures can be described using
kinetic multi-layer models, but the gas-phase chemical
mechanism has to be simplified.

SOA partitioning can occur as non-equilibrium process, either
due to formation of oligomers or viscous phase state.

SOA yields were mostly unaffected by mixing precursors in this
study, but evaporation behavior was strongly affected.

Oligomerization and diffusion effects are difficult to separate
from looking at SMPS data. There is a need to combine
different experimental techniques to solve this puzzle.
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