Kinetic modelling of secondary organic aerosol (SOA) formation: connecting the data points
Fundamental Secondary Organic Aerosol (SOA) Properties

Volvatility & Partitioning

- **High mass loading**
 - Low T → High T
 - Low loading → High loading

- **Viscosity**
 - Low RH → High RH
 - Low T → High T
 - Solid → Semi-solid → Liquid

Koop et al. PCCP (2011)
Consequences of SOA Properties

Equilibrium Partitioning

Case: Outside Sink

Non-Equilibrium Partitioning
(viscous particle)

Equilibrium Partitioning + Oligomerization

= semi-volatile molecule
Feedback & Interaction Between SOA Properties

Volatility & Partitioning

Viscosity

Oligomerization
Interactions of Physical-Chemical Properties of SOA

Inverse Modelling

Kinetic Model
microscopic properties

Chamber Experiments
macroscopic observables
Aerosol Particle:
Multiphase Chemical System

Complications for treatment of SOA formation:

- Particle growth leads to imbalance in layer sizes.
- Evolving concentration gradients require high initial layer count.
- Low computational efficiency.

KM-GAP (Shiraiwa ACP 2012)
Aerosol Particle: Multiphase Chemical System

New: Adaptive Layer Splitting and Merging Scheme *(size and gradient)*
Modelling Strategy for SOA Chamber Experiments

Kinetic Model

- $[Z]_{g}$ \rightarrow $[Z]_{g}$
- $[Z]_{gs}$
- $[Z]_{b1}$ \rightarrow $[Z]_{b1}$
- $[Z]_{b2}$ \rightarrow $[Z]_{b2}$
- $[Z]_{b3}$ \rightarrow $[Z]_{b3}$
- $[Z]_{b4}$ \rightarrow $[Z]_{b4}$
- $[Z]_{bk}$ \rightarrow $[Z]_{bk}$
- $[Z]_{bn}$ \rightarrow $[Z]_{bn}$

Chemical Mechanism (semi-explicit)

- $[Z]_{g}$
- $[Z]_{gs}$
- $[Z]_{b1}$
- $[Z]_{b2}$
- $[Z]_{b3}$
- $[Z]_{b4}$
- $[Z]_{bk}$
- $[Z]_{bn}$

Volatility

- bin1
- bin2
- bin3
- bin4
- bin5
- bin6

KM-GAP 2.0

- dimers (0-2 nitrate groups)
- oligomers
Key Model Parameters and Global Optimization Algorithm

Model Parameters

- Volatility basis set
- Gas-phase wall loss rate: $k_{\text{wall}} \sim 0.25 \text{ h}^{-1}$
- Enthalpy of vaporization
- Oligomerization rate
- Viscosity

MCGA - Global Optimization Algorithm (Inverse Modelling Approach)

Monte Carlo sampling

- Randomly sampled parameter sets

Genetic Algorithm

- Parameter sets: Parameter set 1, Parameter set 2, ..., Parameter set N
- Survival
- Recombination
- Mutation

Goodness of fit

Environmental Chamber Experiments

Georgia Tech Environmental Chamber

12 m³ Teflon bag

Reaction System

NO$_3$ oxidation via injection of N$_2$O$_5$

(+)-α-pinene

limonene

Conditions

< 5 % RH

(NH$_4$)$_2$SO$_4$ seed

Instruments

HR-ToF-AMS

HR-FIGAERO-CIMS

SMPS

Sally Ng
Environmental Chamber Experiments

<table>
<thead>
<tr>
<th>Formation</th>
<th>Evaporation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. limonene \rightarrow NO$_3$</td>
<td></td>
</tr>
<tr>
<td>2. α-pinene \rightarrow NO$_3$</td>
<td></td>
</tr>
<tr>
<td>3. α-pinene + limonene \rightarrow NO$_3$</td>
<td></td>
</tr>
<tr>
<td>4. α-pinene \rightarrow NO$_3$ $+$ limonene \rightarrow NO$_3$</td>
<td></td>
</tr>
</tbody>
</table>

Temperature Profile

Temperature (°C) vs. Time

1. α-pinene
2. Limonene
Model simulations with well-mixed particle phase:

Reversible oligomerization can explain differences.

Limonene SOA more oligomerized than α-pinene SOA.
Mixed Precursor Experiments – Well-mixed Particle Phase

3 SIMULTANEOUS OXIDATION

4 SEQUENTIAL OXIDATION

Evaporation rate is not reproduced in mixed precursor simulations

Is limonene SOA slowing down α-pinene SOA evaporation?
(A) SOA formation is not strongly affected by viscous phase state.

(B) Semi-volatile molecules take longer to evaporate / are trapped inside.

(C) Diffusion barrier could increase over time due to crust formation.
Elevated viscosity can explain slow evaporation of SOA.

Application of Stokes Einstein equation yields viscosity of 10^8 Pa s, typical for α-pinene SOA.
SEQUENTIAL EXPERIMENT: Core-Shell Morphology?

Constant Diffusivity

Oligomerization-Dependent

Scenarios are indistinguishable with the current set of input data.
Secondary Organic Aerosol (SOA) formation from monoterpene precursor mixtures can be described using kinetic multi-layer models, but the gas-phase chemical mechanism has to be simplified.

SOA partitioning can occur as non-equilibrium process, either due to formation of oligomers or viscous phase state.

SOA yields were mostly unaffected by mixing precursors in this study, but evaporation behavior was strongly affected.

Oligomerization and diffusion effects are difficult to separate from looking at SMPS data. There is a need to combine different experimental techniques to solve this puzzle.
Multiphase Modelling Team

Max Planck Institute for Chemistry, Mainz
Multiphase Chemistry Department

Thomas Berkemeier (t.berkemeier@mpic.de)
Steven Lelieveld, Coraline Mattei, Jake Wilson