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Aerosol radiative forcing uncertainty

How do we reduce uncertainty?

Constraining models – e.g., using 

observations to constrain dozens of 

uncertain model parameters

Making models better – detecting 

and attributing structural deficiencies

Understanding processes – e.g., how 

clouds respond to aerosols in an 

environment with many confounding 

factors

Carslaw (2022) Aerosols and Climate, Ch2
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Approach to model development and tuning

Aerosol forcing

0     -1  -2

CMIP5 models

CMIP6 models

A new discovery
Another new discovery

Skillful at AOD

Skillful at CCN

Skillful at 
PM trends

Skillful at cloud 
metrics

Carslaw et al. (Eos 2018)

GLOMAP v1
GLOMAP v2

Different parameterizations (structural uncertainty)
Different parameter settings (parametric uncertainty)
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• Our models and our natural systems of interest are controlled by 

many factors (many structures, parameters and environmental 

conditions)

• Models are expensive to run

• We therefore usually only sample tiny parts of the ‘parameter 

space’

A sampling problem
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Increasing the model sampling density

Bayesian emulator
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Oakley and O’Hagan, Probabilistic sensitivity analysis of complex 

models: A Bayesian approach, J. Roy. Stat. Soc. B (2004).

Lee et al. Emulation of a complex global aerosol model, ACP (2011)

• A perturbed parameter 
ensemble (PPE) is a set of 
model simulations designed to 
optimally sample combinations 
of model inputs

• Designed to train a statistical 
emulator 

→ Can then generate 

~millions of “model variants” 
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Observational constraint using a PPE

Compare PPE/emulator results 
against observations

→ Constrains the parameter 
ranges (to a joint 
observationally plausible 
range)

→ Constrains range of model 
outputs (e.g., reduces 
uncertainty in forcing)
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A PPE of the HadGEM GCM with 26 aerosol-related parameters

(emissions, aerosol processes, removal rates, chemistry, etc.)

Johnson et al. (ACP 2020)
Robust observational constraint of uncertain aerosol processes and emissions 
in a climate model and the effect on aerosol radiative forcing
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Observations used for constraint

~9000 grid-point aggregated 
measurements of:

• Aerosol optical depth
• PM2.5

• Aerosol concentration (N>3nm)
• ~CCN concentration (N>50nm)
• Sulphate mass
• Organic carbon mass
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Observational constraint of aerosol forcing

Constrained Forcing

Observations

Constrained parameter space
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observations

Aerosol direct forcing (W m-2)
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Exposure of a structural error in the aerosol model

Forcing constrained by PM2.5

Forcing constrained by Sulphate

The model doesn’t include nitrate 
aerosol, so constraining PM2.5 forces 
sulfate to be too high
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A PPE of the HadGEM GCM with 37 aerosol, cloud and physical 

climate parameters

(emissions, aerosol processes, radiation, cloud processes, aerosol-

cloud interaction, etc.)

Regayre et al. (ACP 2023)
Identifying climate model structural inconsistencies allows for tight 
constraint of aerosol radiative forcing
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N Atlantic 

shallow cloud 

properties

HadGEM PPE spread

Observations

66%, 90%, full 
PPE range
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Constraining droplet 

number in 1 month 

(November) constrains all 

other months consistently

Constraint of droplet number
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Constraining droplet number 

constrains shortwave flux

Constraint of droplet number
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Constraint of droplet number

Constraining droplet number 

causes a large bias in liquid 

water path
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• Liquid water path and droplet number are inconsistent 

(constraining one creates a bias in the other)

Why?

• The model has single-moment cloud microphysics

• Removal of cloud water (LWP) doesn’t affect droplet number

Hints about structural errors
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Testing all pairs of variables

Normalized absolute 
difference
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This is the forcing 

constraint when we use 

the most consistent set of 

observations

Adding more (less 

consistent) observations 

weakens the constraint

Tighter constraint? Find 

ways to eliminate the 

inconsistencies

Constraint of aerosol forcing

Unconstrained

Constrained

(global mean)
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Potential for improved constraint

Actual

Hypothetical 

(with some remaining 

structural deficiencies)

Hypothetical 

(no structural deficiencies, 

limited by obs. uncertainty)
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Visualizing cloud behavior

A PPE of stratocumulus to cumulus transition using the MONC large 

eddy 2-moment cloud microphysics model
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Sandu and Stevens (2011) 

On the Factors Modulating the 

Stratocumulus to Cumulus 

Transitions

Approach to process understanding

Reference

D SST
D droplet number

D divergence
D LW radiation

D  stability

D inversion strength
D inversion humidity

Can use PPEs to understand 

how multiple cloud-controlling 

factors affect cloud behavior
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85 initial simulations

1. Boundary layer water mixing ratio

2. Boundary layer depth

3. Inversion Dq

4. Inversion Dq

5. Aerosol concentration

6. Autoconversion (droplet→rain) rate

6-parameter large eddy cloud PPE
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Evolution of one ensemble member

12h 34h 72h

Sea surface temperatures increase 1.5 K per day
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Cloud evolution across the PPE
C

lo
u
d
 f
ra

c
ti
o
n

Time from stratocumulus formation 

(hours)



25

Sc to Cu transition time

Aerosol

A
u

to
 c

o
n

v
’

Aerosol

A
u
to

 c
o

n
v
’

Rain



26

B
L
 d

e
p
th

D
q

D
q

A
u
to

 c
o
n
’

A
e
ro

s
o
l

BL depth Dq Dq AerosolBL q



27

• Perturbed parameter ensembles can be used to train emulators,  
enabling multiple factors in models to be explored

• Provide physical insight rather than just a trained ML model

• PPEs can be analysed to expose potential structural deficiencies in 
models when different observations constrain the model to inconsistent 
regions of parameter space

– Can apply to multiple observation types, regions and time periods

• ‘Parameters’ can also be environmental drivers – e.g., cloud controlling 
factors

• If interested, join the APPEAR network – Analysis of PPEs in 
Atmospheric Research (aerosols, chemistry, clouds, climate, 
meteorology from LES to ESM)

Summary
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