

Modeling uncertainties of aerosol properties and processes

Kari Lehtinen

Team: Prof. Aku Seppänen, Dr. Matti Niskanen, Dr. Matthew Ozon, Väinö Hämäläinen, Teemu Salminen

Virtual laboratory for molecular level atmospheric transformations

Sequential particle counter measurements

Time (h)

- **Aims:** Reconstruct the particle size distribution, with uncertainties
 - Estimate the process rates (nucleation, condensational growth, deposition), with uncertainties

A typical number concentration distribution

Number concentration distribution as pdf:s

MEASUREMENT UNCERTAINTIES

Many aerosol measurement devices are based on classification by electrical mobility

Challenge: Charge as a function of particle size needs to be known

Our aim is to find out: How uncertain are the charging probabilities?

Other sources of uncertainty: Diffusion losses, low counting statistics

MODEL SETUP: (following Lopez-Yglesias&Flagan, 2013)

- Specify ion properties
- Boltzmann statistics for the steady state ion distributions
- Calculation of flux coefficients
- Solution of population balances

\downarrow

Charging probabilities for different charging states as a function of particle size (Hoppel&Frick, 1986 -> Wiedensohler, 1988)

Variability in charger ion properties

CHARGING PROBABILITY UNCERTAINTY

Wiedensohler (xxxx) curve fits as pale dotted lines.

Figure 3: The curve densities corresponding to charge states: a) p = 1, b) p = -1, c) p = 2, d) p = -2, e) p = 3, and f) p = -3. The dashed orange lines show the respective charging probabilities evaluated at the expected values of the parameters.

GROWTH RATES

dN/d(logd_p) - contours

ESTIMATION OF RATES: KALMAN FILTER

- An algorithm that is used to estimate system parameters, including those that cannot be measured directly
- Input: noisy and/or inaccurate and/or missing measurements
- Output: less noisy, more complete and more accurate estimates, with uncertainty estimations
- System parameters are modeled as probability density distributions
- Integrates physical knowledge and intuition into Bayesian inference
- Used widely e.g. in process control and tracking systems

BAYESIAN STATE ESTIMATION

- Sequence of measurements: y^1, \dots, y^T
- State variable (model unknowns) $X^k = \begin{bmatrix} N_i^k & g_i^k & \lambda_i^k & J^k \end{bmatrix}$
- State-space model

 $X^{k+1} = F(X^k) + w^k \quad \qquad \text{Evolution model (GDE)}$ $y^k = HX^k + v^k \quad \qquad \text{Observation model (DMPS)}$

State estimation: Given y¹,...,y^t estimate X^k

k > t: Prediction
k = t: Filtering
k < t: smoothing</pre>

PHYSICAL KNOWLEDGE AND INTUITION

• Time evolution of the size distribution is described by the aerosol GDE

• Prior 'guesses' for the variables can be taken to make sense, and can include correlations both in time and size

General dynamic equation (GDE) of aerosols

DMA-train measurements of sulphuric acid-ammonia nucleation and growth in CLOUD

Thanks to Lubna Dada and Dominik Stolzenburg who made the comparisons to CLOUD data possible

Example: Inverse modeling of coagulation and deposition with aerosol GDE & MCMC

Variables with uncertainty:

Fractal shape parameters (fractal dimension, primary particle size) Van Der Waals force (Hamaker constant) Flow velocity

Estimated particle size distributions

Marginal posterior densities computed using models with different unknowns 1e-8

EASTERN FINLAND

Thank you!

Atmos. Chem. Phys., 21, 12595-12611, 2021 https://doi.org/10.5194/acp-21-12595-2021 C Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. \odot \odot

Atmospheric Chemistry and Physics

Geosci, Model Dev., 14, 3715-3739, 2021 bttps://doi.org/10.5/94/gmd-14-3715-2021 https://doi.org/10.2194/gmd-14-2(13-2021 @ Author(s) 2021. This work is distributed under

The Creative Commons Attribution 4.0 License.

BAYROSOL1.0

Available online at www.sciencedirect.com ScienceDirect

Department of Applied Physics, University of East Finnish Meteorological Institute, Kuopio, Finland Demonstrate of Mathematical Economy of e-

Retrieval of process rate parameters in the general dynamic

Acture ration for aerosols using Bayesian state estimation equation for aerosols using Bayesian state estimation

Matthew Ozon¹, Alsa Seppanen¹, Jari P. Kalpio^{1,3}, and Kari E. J. Lehtinen^{1,2}

And Martinew Orlow, And Seppement, Jarrier, Naupor, and Narrier, J. Lenument, Department of Applied Physics, University of Eastern Finland, Kuopio, Finland Department of Applied Institute, Kuopio, Finland Finnish Meteorological Institute, Kuopio, Finland

Journal of Aerosol Science 00 (2023) 1-19

Model Development

Uncertainty Analysis of the Aerosol Charge Distribution in a Bipolar Environment

Aerosol formation and growth rates from chamber experiments using Kalman smoothing

Matthew Ozon¹, Dominik Stolzenburg², Lubna Dada^{2,3,4}, Aku Seppänen¹, and Kari E. J. Lehtinen^{1,5}

¹Department of Applied Physics, University of Eastern Finland, 70210 Kuopio, Finland ²Institute for Atmospheric and Earth System Research/ Physics, University of Helsinki, 00014 Helsinki, Finland ³EPFL, School of Architecture, Civil and Environmental Engineering, 1951 Sion, Switzerland ⁴Paul Scherrer Institute, Laboratory of Atmospheric Chemistry, 5232 Villigen PSI, Switzerland 5 Atmospheric Research Centre of Eastern Finland, Finnish Meteorological Institute, 70210 Kuopio, Finland

Väinö Hämäläinen^{1,1,*}, Aku Seppänen^{1,1}, Kari Lehtinen^{1,1,1}