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The neural network shortcut

Iterative solvers can  Typical approach

be computationally
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transparent and Const _.‘1 ‘!
scientifically robust.

Neural networks are FQ Q r@ rik
the ultimate black box. <:2.1 —.-l —.J —.-{

But, they can be faster
than iterative solvers.

Neural network shortcut
A combined approach

is preferable.
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Modeling aerosol mass concentrations ?2

Organics 2-phases

Inorganic Salts

organic vapor equil. water + org. vapor equil. %
3, " o« o

water vapor equil. water + inorg. vapor equil.

Emission inventories and chemistry
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m Mixing decreases the effective in’!ig\é?:ﬁobrlg M)
vapor pressure of each @ @
component. Ideal (neutral)

mp = pjsat Xy = pjsat aj interactions

m The activity coefficient (v;) ‘. .‘
parameterizes the energetic
cost (favorability) of mixing. Unfavorable O(’&%’&)(?

interactions
m In terms of an effective volatility.
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BAT: A reduced complexity model

m AIOMFAC is used as a

high fidelity reference. Multi-component mixture
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Non-ideal interactions
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BAT: A reduced complexity model

m AIOMFAC is used as a
high fidelity reference.

m A simpler Binary Activity
Thermodynamics model
is built using AIOMFAC
generated data.

B github.com/Gorkowski/
Binary_Activity_
Thermodynamics_Model

Gorkowski et al. (2019)

Multi-component mixture
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Binary Activity Thermodynamics

BAT approximation

” ” yorg,1 ’yw

® * yorg,Z ’yw

Non-ideal interactions
with water
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BAT: Essential equations >

B Following a power series

expansion of molar excess Gibbs GE/RT = dorg(1 — dorg) [c1 + C2(1 — 200rg)] (1)
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BAT: Essential equations >

B Following a power series
expansion of molar excess Gibbs GE/RT = dorg(1 — dorg) [c1 + C2(1 — 200rg)] (1)
energy of mixing (GF) (Redlich and
Kister, 1948).

My
Ch=0n,1 exp(dpn2 x 0:C) +0an3 exp ( Ana

B Generalized by parameterizing the " Morg
expansion coefficients (c¢,). (2)

m Independent variables E d(GE/RT)
%= mole fraction (x,rg) or scaled In(yw) = (G*/RT) — Xorg dXorg (3)
Vol. (¢org), 0:C, & Morg

m Dependent variables aw = Yw(1 — Xorg) (4)

% water activity
(aw x 100 % =~ RH) and organic
activity

Gorkowski et al. (2019)
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Inverting the BAT model 6

. - . . fy-q.7r

For gas—particle partitioning we need ~; and x,4 j; both are used in Cr = Cfat CE: i p
M3 e

k

m BAT model must be inverted to use
a, as an input.

m Iterative refinement is possible by
varying Xorg,; to match ay.

m Instead neural networks are used to
directly predict x4 to a high degree
of accuracy.

3-D Models will have:
m 0:C
B Morg
m RH~a, x 100%



Building a Neural Network 7

m We used a deep belief 20 Hidden layers
—

network of artificial 0:C
neurons.

m In effect this acts as a Mor
generalized curve 7
fitting tool.

a, (RH)
m A training database of
random inputs and
targeted outputs is
generated with the BAT
model.




Training of Neural Network 8

m BAT NN was trained on

9.8 x 10° data points. 10° ——Test
m VBS NN was trained on Validation
1.3 x 10* data points. Train

m Training, validation,
and test split of
70/15/15.

Mean Squared Error (mse)

i
0 10 20 30 40 50 60
Epochs (training iterations)



Training of Neural Network 8

m BAT NN was trained on %10 3
9.8 x 10° data points. I

m VBS NN was trained on ] .
1.3 x 10% data points. <= 4 -
m Training, validation, . C

and test split of
70/15/15.

Mean Squared Error
N
1
|
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Neural Networks in the context of BAT °
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Neural Networks in the context of BAT °

T L] BATO
% 13 BATNNe
S 0.8
& ] 0:C=03 ©©
2 064 M,,, =200 g mol @@
= . ®
S 94 ® 0:C=2
= . M__ =400 g mol’
B : org
© 02 —_
= ]
0 ( I I ] ] I ] I L] L] ] I
0 0.2 0.4 0.6 0.8 1

Water mole fraction



Targeting 3-D models (GEOS-Chem)

Inputs area,, C/g*z", C;*, and chemical information.

Low Fidelity High Fidelity
average molecule functionality, Jj™ molecule functionality,
M _,0:.C_,(H:C.) M, 0:C, (H:C)
avg avg avg l 1 / Ji /
BAT in: M,0:C,and a,
neural network out:x,, 013ms
BAT evaluation  [; . .
with optional a, in: M, 0:C, H:C, andx Yyl 058 ms

refinement |00p. out: yorg’ Vi aorg aw sep’ aw

in: M, 0:C, a cg*fn s w
VBS Ou. = / w 2.8mS
neural network
VBS+BAT evaluation |im: €75, C=,y, .M,
with gglt\lliéirbrium W, , q.a(awsep) fjguess g 1oms
' out: fj Cj", ng 1

|-

Organic and Water PM, . mass



Isoprene SOA: NN underpredicts
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Isoprene SOA: NN underpredicts

MCM simulation
outputs.

Isoprene and O3 at
100 ppb.

Simulation of 343
products after 12 hr.

Used the
EVAPORATION model
for vapor pressure
estimations.

NN only was 2x faster.

17

0.8

Partitioning coefficient (&)
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NN + refinement
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Isoprene SOA: PM mass agrees well 12

m OA mass agreement is .
pretty good. 1----NNonly
1 =NN + refinement

15-_

PM mass (ug m=3)
)
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Water activity (a 100 = RH)



Isoprene SOA: PM mass agrees well 12

m OA mass agreement is 207
pretty good. 1 ----NNonly
1 =NN + refinement

15-_

m Aerosol water mass is
also in agreement.

PM mass (ug m=3)
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Water activity (a 100 = RH)




Isoprene SOA: PM mass agrees well 12

m OA mass agreement is 0

pretty good. %
. Water 8
m Aerosol water massis @ -5 o o o ® §
also in agreement. 2 e o  © 8 o 8 o 0%
m The mass errors are D -10 OA * &
< 10%, except in the -dq:)
CCN activation region. S -15 8
c o
o -20
o
| -
& -25 o
S0+ T 7T T T T T
0 0.2 0.4 0.6 0.8 1

Water activity (a 100 ~ RH)



Isoprene SOA: PM mass agrees well 12

(000)5N0)0)))0l0)0)

-

m OA mass agreement is
pretty good.

m Aerosol water mass is
also in agreement.

o
®

m The mass errors are
< 10%, except in the
CCN activation region.

o
o

©
IS

m The errorsin
partitioning
coefficients are not
directly translated to
PM mass errors.

PM mass fraction

o
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a-Pinene SOA: NN underpredicts
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a-Pinene SOA: NN underpredicts
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a-Pinene SOA: PM mass agrees well

m Good mass agreement.

PM mass (ug m=3)
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a-Pinene SOA: PM mass agrees well

m Good mass agreement.

PM mass (ug m=3)
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a-Pinene SOA:;

m Good mass agreement.

m The mass errors are
< 11%.

Percent difference
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-15

-20
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PM mass agrees well
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0.2 0.4 0.6 0.8

Water activity (a 100 = RH)
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The neural network shortcut

m The combination of iterative
solvers and NN can be
accurate and efficient.

m Extensions of this
methodology to other
processes, is possible as long
as the computation trade-off
is favorable.

Typical approach

Guess —>
Const

Const.

Solver

Decreasmg error
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The neural network shortcut

m The combination of iterative Typical approach
solvers and NN Can be Solver Decreasmg error
accurate and efficient. Guess_, o

m Extensions of this Const }
methodology to other
processes, is possible as long

as the con%putation trade-off %@1 1@'} i K

is favorable.

m Extensions to the BAT model Neural network shortcut
will look at organic-organic
and inorganic-organic
equilibrium modeling.

e

Const.







Volatlllty is dependent on RH

Partitioning coefficient (&)
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Volatlllty is dependent on RH
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Volatlllty is dependent on RH

Partitioning coefficient (&)

-6 -4 -2 0 2 4 6
Effective volatility, log,.C* (ug m~)



Organic mass shows good agreement '@
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Organic mass shows good agreement '@
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Organic mass shows good agreement
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Organic mass shows good agreement '@
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Water mass also agrees
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Measurement agreement of organic mass fractions

1o @ Isomersof pimelic acid +0% 11
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Side note on Kohler curves of CCN

Vor dry
aw Vw + Vorg — Vorg, dry
(a) 1.008 - (b) 012' Koy @ Phase
LKCCN/X’phase : O‘C 0.5 cen o
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© ) :
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© g ]
E < 0.04+
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0'02-. Ko /3 Phase
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Measurement agreement: sccn

+42% 11
average

measurement

error

Maleic acid
(6]

0.2

m 30 comparison points

m Error of £0.055
0.1

BAT modeled Keen

0 0.1 0.2 0.3
Measured .,



BAT sequels

Organic-organic interactions Camilo is pursuing the
implementation into GEOS-Chem.

Inorganic-organic interactions

L 2
"ng of
o i o o 3 7 s
PM organic mass (ug m-)

2-Phase systems
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