Trimming the Iterative Fat of Equilibrium Thermodynamic Models Using Neural Networks

Kyle Gorkowski* Camilo S. Damha, Thomas C. Preston, Andreas Zuend

Atmospheric and Oceanic Sciences, McGill University *Now at Los Alamos National Lab, gorkowski@lanl.gov ORSNG

Fonds de recherche Nature et technologies Québec to to Rourses de recherche postdoctorale

IAMA December, 5 2019

 Iterative solvers can be computationally expensive.

Typical approach

- Iterative solvers can be computationally expensive.
- But, they are transparent and scientifically robust.
- Neural networks are the ultimate black box.

Typical approach

- Iterative solvers can be computationally expensive.
- But, they are transparent and scientifically robust.
- Neural networks are the ultimate black box.
- But, they can be faster than iterative solvers.
- A combined approach is preferable.

Typical approach Guess $\longrightarrow \bigcirc 0$ Obj. $\downarrow \frown \bigcirc$

Modeling aerosol mass concentrations²

water vapor equil.

Modeling aerosol mass concentrations²

Modified Raoult's law

- Mixing decreases the effective vapor pressure of each component.
- $\square p_j = p_j^{\text{sat}} x_j \gamma_j = p_j^{\text{sat}} a_j$
- The activity coefficient (γ_j) parameterizes the energetic cost (favorability) of mixing.

Modified Raoult's law

- Mixing decreases the effective vapor pressure of each component.
- $\square p_j = p_j^{\text{sat}} x_j \gamma_j = p_j^{\text{sat}} a_j$
- The activity coefficient (γ_j) parameterizes the energetic cost (favorability) of mixing.
- In terms of an effective volatility.

$$\bullet C_j^* = C_j^{\text{sat}} C_{\Sigma_k}^{\Sigma_{\pi}} \frac{\gamma_j q_j^{\pi}}{M_j \sum_k \frac{C_k^2}{M_j}}$$

Unfavorable interactions

BAT: A reduced complexity model

 AIOMFAC is used as a high fidelity reference.

Multi-component mixture

Non-ideal interactions among all species

Gorkowski et al. (2019)

BAT: A reduced complexity model

- AIOMFAC is used as a high fidelity reference.
- A simpler Binary Activity Thermodynamics model is built using AIOMFAC generated data.
- github.com/Gorkowski/ Binary_Activity_ Thermodynamics_Model

Multi-component mixture

Non-ideal interactions among all species

Binary Activity Thermodynamics

BAT approximation

Non-ideal interactions with water

Gorkowski et al. (2019)

BAT: Essential equations

- Following a power series expansion of molar excess Gibbs energy of mixing (G^E) (Redlich and Kister, 1948).
- Generalized by parameterizing the expansion coefficients (*c_n*).

$$G^{E}/RT = \phi_{org}(1 - \phi_{org}) [c_{1} + c_{2}(1 - 2\phi_{org})] \quad (1)$$

$$c_{n} = a_{n,1} \exp(a_{n,2} \times \mathbf{O} : \mathbf{C}) + a_{n,3} \exp\left(a_{n,4} \frac{M_{w}}{M_{org}}\right) \quad (2)$$

BAT: Essential equations

C

- Following a power series expansion of molar excess Gibbs energy of mixing (G^E) (Redlich and Kister, 1948).
- Generalized by parameterizing the expansion coefficients (*c_n*).
- Dependent variables

% water activity ($a_w \times 100\% \approx RH$) and organic activity

$$G^{E}/RT = \phi_{org}(1 - \phi_{org}) [c_{1} + c_{2}(1 - 2\phi_{org})] \quad (1)$$

$$a_{n} = a_{n,1} \exp(a_{n,2} \times \mathbf{0} : \mathbf{C}) + a_{n,3} \exp\left(a_{n,4} \frac{M_{w}}{M_{org}}\right) \quad (2)$$

$$(2)$$

$$\ln(\gamma_w) = (G^E/RT) - x_{org} \frac{d(G^E/RT)}{dx_{org}}$$
(3)

$$a_w = \gamma_w (1 - x_{org}) \tag{4}$$

Gorkowski et al. (2019)

Inverting the BAT model

For gas–particle partitioning we need γ_j and $\mathbf{x}_{org,j}$; both are used in $C_j^* = C_j^{\text{sat}} C_{\Sigma_k}^{\Sigma_{\pi}} \frac{\gamma_j q_j^{\pi}}{M_j \sum_k \frac{C_k}{M_i}}$.

3-D Models will have:

- 0:C
- M_{org}
- **RH** $\approx a_w \times 100\%$

Inverting the BAT model

For gas–particle partitioning we need γ_j and $x_{org,j}$; both are used in $C_j^* = C_j^{\text{sat}} C_{\Sigma_k}^{\Sigma_{\pi}} \frac{\gamma_j q_j^{\alpha}}{M_j \sum_k \frac{C_{\pi}}{M_k}}$.

3-D Models will have:

- 0:C
- M_{org}
- **RH** $\approx a_w \times 100\%$

- BAT model must be inverted to use *a_w* as an input.
- Iterative refinement is possible by varying x_{org,j} to match a_w.
- Instead neural networks are used to directly predict x_{org,j} to a high degree of accuracy.

Building a Neural Network

- We used a deep belief network of artificial neurons.
- In effect this acts as a generalized curve fitting tool.
- A training database of random inputs and targeted outputs is generated with the BAT model.

Training of Neural Network

Training of Neural Network

Neural Networks in the context of BAT

Neural Networks in the context of BAT ⁹

Targeting 3-D models (GEOS-Chem)

Isoprene SOA: NN underpredicts

- MCM simulation outputs.
- Isoprene and O₃ at 100 ppb.
- Simulation of 343 products after 12 hr.
- Used the EVAPORATION model for vapor pressure estimations.

Isoprene SOA: NN underpredicts

- MCM simulation outputs.
- Isoprene and O₃ at 100 ppb.
- Simulation of 343 products after 12 hr.
- Used the EVAPORATION model for vapor pressure estimations.
- NN only was 2x faster.

 OA mass agreement is pretty good.

- OA mass agreement is pretty good.
- Aerosol water mass is also in agreement.

- OA mass agreement is pretty good.
- Aerosol water mass is also in agreement.
- The mass errors are < 10%, except in the CCN activation region.

- OA mass agreement is pretty good.
- Aerosol water mass is also in agreement.
- The mass errors are < 10%, except in the CCN activation region.
- The errors in partitioning coefficients are not directly translated to PM mass errors.

$\alpha\text{-Pinene SOA: NN underpredicts}$

- α-Pinene and O₃ at 20 ppb.
- Simulation of 198 products after 12 hr.

α -Pinene SOA: NN underpredicts

- α-Pinene and O₃ at 20 ppb.
- Simulation of 198 products after 12 hr.
- NN only was 1.5x faster.
- NN+refinement was 2-5 times faster than iterative refinement only.

$\alpha\text{-Pinene SOA: NN underpredicts}$

- α -Pinene and O_3 at 20 ppb.
- Simulation of 198 products after 12 hr.
- NN only was 1.5x faster.
- NN+refinement was 2-5 times faster than iterative refinement only.

α -Pinene SOA: PM mass agrees well

α -Pinene SOA: PM mass agrees well

α -Pinene SOA: PM mass agrees well

 The combination of iterative solvers and NN can be accurate and efficient.

- The combination of iterative solvers and NN can be accurate and efficient.
- Extensions of this methodology to other processes, is possible as long as the computation trade-off is favorable.

- The combination of iterative solvers and NN can be accurate and efficient.
- Extensions of this methodology to other processes, is possible as long as the computation trade-off is favorable.
- Extensions to the BAT model will look at organic-organic and inorganic-organic equilibrium modeling.

Volatility is dependent on RH

Volatility is dependent on RH

Volatility is dependent on RH

Water mass also agrees

Measurement agreement of organic mass fractions

Side note on Köhler curves of CCN

Measurement agreement: κ_{CCN}

30 comparison points
 Error of ±0.055

BAT sequels

Organic-organic interactions

Inorganic-organic interactions

2-Phase systems

Camilo is pursuing the implementation into GEOS-Chem.

0 3 7 11 15 PM organic mass (μg m⁻³)

Gorkowski, K., Preston, T. C., and Zuend, A.: RH-dependent organic aerosol thermodynamics via an efficient reduced-complexity model, Atmos. Chem. Phys. Discuss., pp. 1–37, https://doi.org/10.5194/acp-2019-495, URL https://www.atmos-chem-phys-discuss.net/acp-2019-495/, 2019.

Redlich, O. and Kister, A. T.: Algebraic Representation of Thermodynamic Properties and the Classification of Solutions, Ind. Eng. Chem., 40, 345–348, https://doi.org/10.1021/ie50458a036, 1948.