Development and applications of benchmarking aerosol models on the regional scale using a stochastic particle-resolved approach

Jeffrey H. Curtis, Nicole Riemer and Matthew West

University of Illinois at Urbana-Champaign

International Aerosol Modeling Algorithms Conference
December 5, 2019
Atmospheric modeling: A multiscale challenge

Global scale
Regional scale
Global scale

Mesoscale
Microscale
Particle scale
Molecular scale

Curtis (University of Illinois)
Benchmarking aerosol models on the regional scale
December 5, 2019
Atmospheric modeling: A multiscale challenge

Global scale
Regional scale
Mesoscale
Microscale
Particle scale
Molecular scale

Li et al., Atmospheric Environment, 45, 2488-2495, 2011

Curtis (University of Illinois) Benchmarking aerosol models on the regional scale December 5, 2019
How do models represent aerosol composition?

- Simplifying assumptions regarding the aerosol composition
 - Sectional model: aerosols in a bin are fully internally mixed.
 - Modal model: aerosols in a mode are fully internally mixed.
How do models represent aerosol composition?

- Simplifying assumptions regarding the aerosol composition
 - Sectional model: aerosols in a bin are **fully internally mixed**.
 - Modal model: aerosols in a mode are **fully internally mixed**.
Alternative representation: Particle-resolved

- Use a discrete representation of particles
- Representation of processes are straight-forward to model
- No bins or modes
- No assumption made regarding how particles are mixed

Model verification of aerosol representation

We need approximations at the regional and global scales. But approximations cause error and uncertainties.
What is composition space? Each particle is uniquely represented as an A-dimensional vector with mass composition components $\{\mu_1^i, \mu_2^i, \ldots, \mu_A^i\}$.
Particle-resolved modeling technique

What is composition space? Each particle is uniquely represented as an A-dimensional vector with mass composition components $\{\mu^i_1, \mu^i_2, \ldots, \mu^i_A\}$

![Diagram showing composition space with particles and mass composition components]

<table>
<thead>
<tr>
<th></th>
<th>Particle 1</th>
<th>Particle 2</th>
<th>Particle 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>BC</td>
<td>3</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>SO$_4$</td>
<td>12</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>OC</td>
<td>5</td>
<td>8</td>
<td>2</td>
</tr>
</tbody>
</table>

Sulfate (SO$_4$) Organic carbon (OC) Black carbon (BC)

Particle-resolved modeling technique

What is composition space? Each particle is uniquely represented as an \(A\)-dimensional vector with mass composition components \(\{\mu_1^i, \mu_2^i, \ldots, \mu_A^i\}\)

<table>
<thead>
<tr>
<th>Particle</th>
<th>Particle</th>
<th>Particle</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>BC</td>
<td>SO\textsubscript{4}</td>
<td>OC</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>2</td>
</tr>
</tbody>
</table>

Composition space \(A \approx 20\)

Curtis (University of Illinois)
Benchmarking aerosol models on the regional scale
December 5, 2019 6/15

Benefits of particle-resolved models

- No approximation need for representing mixing state
 - Coarse graining tool: deriving parameters for more approximate models
 - Benchmark and error quantification for more approximate models
 - Detailed studies on the particle scale and experimental intercomparison.

- Scales efficiently for high-dimensional data (number of aerosol species)
 - Avoids curse of dimensionality

- Efficient algorithms make particle-resolved modeling feasible
 - Accelerated binned coagulation (Riemer et al. 2009, Michelotti et al. 2013)
 - Particle weighting methods to reduce statistical error (DeVille et al. 2011, 2019)
 - Accelerated particle removal algorithms (Curtis et al. 2016)
Benchmarking approximate models

Simulation inputs and processes should be as similar as possible

- Same meteorological model
- Same chemical mechanisms
- Consistency in emissions
- Identical particle removal processes
- Identical transport algorithms

Only change the aerosol microphysics
PartMC coupled with WRF allows regional simulations with highly-detailed mixing state.

Each grid cell simulates 10,000 computational particles - billions of particles for the domain.

Many levels of detail from the large-scale to population level to single-particle details of composition and emission source.

Computational expense: 300,000 core hours for 2 day simulation from the domain to right.
How do we move vectors of particle composition?

Transport PDE → Discretize in space, time, and particles → Determine probabilities → Sample particle sets

\[q_{i,j}^{t+1} - q_{i,j}^t = \Delta t \left(\frac{F_{i+1/2,j}^t - F_{i-1/2,j}^t}{\Delta x} + \frac{F_{i,j+1/2}^t - F_{i,j-1/2}^t}{\Delta y} \right) \]

(a) (b) (c)

Replicates deterministic finite volume method to isolate importance of representation
Simulating stochastic aerosol transport

Testcase: 1D constant positive u advection (third order)
Simulating stochastic aerosol transport

Testcase: 1D constant positive u advection (third order)
Simulating stochastic aerosol transport

Testcase: 1D constant positive u advection (third order)
Simulating stochastic aerosol transport

Testcase: 1D constant positive u advection (third order)
Simulating stochastic aerosol transport

Testcase: 1D constant positive u advection (third order)
Simulating stochastic aerosol transport

Testcase: 1D constant positive u advection (third order)
Simulating stochastic aerosol transport

Testcase: 1D constant positive u advection (third order)
Simulating stochastic aerosol transport

Testcase: 1D constant positive u advection (third order)
Simulating stochastic aerosol transport

Testcase: 1D constant positive u advection (third order)
Results: Simulating stochastic aerosol transport

Odd orders perform better (implicit diffusion) Converges to FV method in particle number

Curtis, Riemer and West, *Geoscientific Model Development* (in prep)
Transport performance in real-world case

Complex terrain, complex and evolving wind field

$\frac{q}{10^1} \sim 10^{10}$

$t = 0 \text{ hr}$
$t = 6 \text{ hr}$
$t = 12 \text{ hr}$

Wind speed m s^{-1}

Curtis (University of Illinois)
Transport performance in real-world case

Stochastic algorithm applied to third order monotonic advection scheme in WRF

$N_{\text{part}} = 10 \quad N_{\text{part}} = 100 \quad N_{\text{part}} = 1000 \quad \text{FV}$

Benchmarking aerosol models on the regional scale

December 5, 2019
Transport performance in real-world case

Stochastic algorithm applied to third order monotonic advection scheme in WRF

![Graph showing RMSE Part-FV versus Number of particles N_{part}](image)

Number of particles

RMSE Part-FV

10^{-1}

10^{-2}

10^1 10^2 10^3

Curtis (University of Illinois)

Benchmarking aerosol models on the regional scale

December 5, 2019

13/15
First step: CCN error quantification for a sectional projection

The diagram shows a graph with the mixing state \(\chi_{ccn} \) on the x-axis and the percent error in CCN concentration on the y-axis. The graph illustrates the impact of complex mixing states on error predictions.

- **Overestimated** regions indicate higher error predictions than actual values.
- **Underestimated** regions indicate lower error predictions than actual values.

Complex mixing states result in larger errors, as shown by the deviation from the ideal mixing states (Externally and Internally mixed).

Curtis (University of Illinois)
Benchmarking aerosol models on the regional scale
December 5, 2019
Concluding thoughts

Future work: Model benchmarking

Use particle-resolved modeling and mixing state metrics to benchmark aerosol models that use varying levels of mixing state.

Code availability

https://github.com/compdyn/partmc

Funding

DE-SC0011771
DE-SC0019192