Development and applications of
benchmarking aerosol models on the

regional scale using a stochastic
particle-resolved approach

Jeffrey H. Curtis, Nicole Riemer and Matthew West

University of Illinois at Urbana-Champaign

International Aerosol Modeling Algorithms Conference
December 5, 2019

Curtis (University of lllinois) Benchmarking aerosol models on the regional scale



Atmospheric modeling: A multiscale challenge
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Atmospheric modeling: A multiscale challenge
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How do models represent aerosol composition?

amount

radius

Modal

radius
Sectional

Simplifying assumptions regarding the aerosol composition
Sectional model: aerosols in a bin are fully internally mixed.
Modal model: aerosols in a mode are fully internally mixed.
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Alternative representation: Particle-resolved
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Particle-resolved

Use a discrete representation of particles
Representation of processes are straight-forward to model

No bins or modes
No assumption made regarding how particles are mixed

N. Riemer, M. West, R. A. Zaveri, and R. C. Easter, Journal of Geophystca/ Research, 2009
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Model verification of aerosol representation

We need approximations at the regional and global scales.
But approximations cause error and uncertainties.
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Particle-resolved modeling technique

What is composition space? Each particle is uniquely represented as an
A-dimensional vector with mass composition components {yu¢, ub, ..., u%}
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N. Riemer, M. West, R. A. Zaveri, and R. C. Easter, Journal of Geophysical Research, 2009
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Particle-resolved modeling technique

What is composition space? Each particle is uniquely represented as an

A-dimensional vector with mass composition components {zf, us, ..., '}
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Particle-resolved modeling technique

What is composition space? Each particle is uniquely represented as an

A-dimensional vector with mass composition components {yu¢, ub, ..., u%}
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Benefits of particle-resolved models

No approximation need for representing mixing state

Coarse graining tool: deriving parameters for more approximate models
Benchmark and error quantification for more approximate models
Detailed studies on the particle scale and experimental intercomparison.

Scales efficiently for high-dimensional data (number of aerosol species)
Avoids curse of dimensionality

Efficient algorithms make particle-resolved modeling feasible
Accelerated binned coagulation (Riemer et al. 2009, Michelotti et al. 2013)
Particle weighting methods to reduce statistical error (DeVille et al. 2011, 2019)
Accelerated particle removal algorithms (Curtis et al. 2016)
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Benchmarking approximate models

Simulation inputs and processes should be as similar as possible
Same meteorological model
Same chemical mechanisms
Consistency in emissions
Identical particle removal processes
Identical transport algorithms

Only change the aerosol microphysics
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Particle-resolved modeling on the regional scale

P

PartMC coupled with WRF allows regional
simulations with highly-detailed mixing state.

Each grid cell simulates 10 000 computational [ropuon eva]
particles - billions of particles for the domain. o

tration #/cn

Many levels of detail from the large-scale to
population level to single-particle details of
composition and emission source.

Computational expense: 300000 core hours for  [mepmcid]
2 day simulation from the domain to right :
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Curtis, Riemer and West, Geoscientific Model Development, 2017
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How do we move vectors of particle composition?

Transport PDE — Discretize in space, time, and particles — Determine probabilities — Sample particle sets
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Replicates deterministic finite volume method to isolate importance of representation
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Simulating stochastic aerosol transport

Testcase: 1D constant positive v advection (third order)
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Simulating stochastic aerosol transport

Testcase: 1D constant positive v advection (third order)
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Simulating stochastic aerosol transport

Testcase: 1D constant positive v advection (third order)
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Simulating stochastic aerosol transport

Testcase: 1D constant positive v advection (third order)
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Simulating stochastic aerosol transport

Testcase: 1D constant positive v advection (third order)
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Simulating stochastic aerosol transport

Testcase: 1D constant positive v advection (third order)
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Results: Simulating stochastic aerosol transport
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Odd orders perform better (implicit diffusion)
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Number of computational particles npar

Converges to FV method in particle number
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Transport performance in real-world case

Complex terrain, complex and evolving wind field
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Transport performance in real-world case

Stochastic algorithm applied to third order monotonic advection scheme in WRF

Npart =10 Npm'& =100 Npart = 1000 FV
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Transport performance in real-world case

Stochastic algorithm applied to third order monotonic advection scheme in WRF
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First step: CCN error quantification for a sectional projection
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Concluding thoughts

Future work: Model benchmarking

Use particle-resolved modeling and
mixing state metrics to benchmark .
aerosol models that use varying levels
di radius

£ miin
of mixing state Modal
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