Heterogeneous production of nitrate in extreme haze

Yuk Chun Chan, Becky Alexander Department of Atmospheric Sciences University of Washington

Christopher D. Holmes, Tomás Sherwen, Shuting Zhai, Xuan Wang, Mat Evans

China PM_{2.5} is underestimated in air quality models

Much of this underestimate in $PM_{2.5}$ is thought to be due to a model low bias in sulfate/HMS.

In contrast, the nitrate mass fraction is overestimated in models.

Importance of nitrate formation in Beijing air

- Nitrate is one of the major inorganic aerosol species (10-15% in winter in Beijing).
- Nitrate is becoming more important during wintertime haze events in China after a national regulation of SO₂ emission was introduced.
- Models have high bias relative to observed nitrate concentrations. It is thought that most nitrate forms through heterogeneous chemistry in winter.
- Heterogeneous chemistry of NO_y may influence radical budgets (via HONO and CINO₂ formation)
- \sim ...and thus affect the production rate of O₃, organic aerosols and sulfate.

Heterogeneous NO_x chemistry as a source of HONO?

Fractional contributions of sulfate formation pathways

Increase in gas-phase sulfate production (SO₂ + OH) from clean (19%) to polluted (34%) conditions due to increase in OH resulting from production of HONO from heterogeneous uptake of NO₂ in the model.

Nitrate formation in Beijing in GEOS-Chem: $\Delta^{17}O$ (nitrate)

Heterogeneous nitrate formation: $\Delta^{17}O(nitrate)$

Research questions

- I. What is the role of heterogeneous chemistry of reactive nitrogen (NO_y) for nitrate formation during winter extreme haze events in northern China? What is the dominating mechanism?
- 2. What are the implications of heterogeneous NO_y chemistry for radical formation in polluted, urban air?
- 3. What are the implications for mitigation strategies for improving air quality in Asian metropolitan regions?

GEOS-Chem (GC) 3D global chemical transport model

- A state-of-the-art numeric global model developed for simulating tropospheric chemistry
- Driven by GEOS-FP meteorological data assimilation products (native resolution: 0.5° latitude x 0.625° longitude x 72 vertical levels)
- Simulates the HO_x-NO_x-VOC-ozone-halogen-aerosol chemistry in the troposphere dynamically
- Calculates aerosol thermodynamical equilibrium using ISORROPIA II module
- Spatial resolution for the GC simulations: 4° latitude x 5° longitude and 47 vertical levels
- Simulation period: Oct 2014 Jan 2015

Measurements and observations

- Two independent datasets of $\Delta^{17}O(NO_3^-)$ measurements for aerosol sampled in Beijing conducted at UW IsoLab:
 - 1. From *He et al.* (2018); Samples collected during several hazy episodes in Oct 2014 to Jan 2015;
 - From Wang et al. (2019); Samples collected every Wednesday and Sunday in 2014;
- Ground-based measurement of other gas species (e.g., NO₂, ozone) from the same studies above
- Ground-based measurement of HONO concentration in Jinan in 2015-16 winter (another major city in northern China) from *Li* et *al.* (2018)
- Ground-based measurement of N_2O_5 concentration in Beijing in Nov. Dec. 2018 (Wei Zhou, CAS, Beijing).

How does the standard GC model perform?

Overestimates the surface concentration of nitrate in ulletBeijing. (Normalized mean bias: +76.8%)

• Overestimates nitrogen oxidation ratio (NOR, +0.29), suggesting too high nitrate production rates (or underestimates other NO_x loss processes)

$$\frac{[\text{HNO}_3(g)] + [p - \text{NO}_3^-]}{[\text{HNO}_3(g)] + [p - \text{NO}_3^-] + [\text{NO}_2]}$$

How does the standard GC model perform?

- Underestimates the variability of $\Delta^{17}O(NO_3^{-1})$ (±0.9‰ versus ±3.8‰)
- Underestimate the mean of $\Delta^{17}O(NO_3^-)$ during the wintertime haze events (27‰ versus 30‰).
- Cannot reproduce the observed positive relationship between and PM_{2.5}.

How does the standard GC model perform?

- Underestimates the variability of $\Delta^{17}O(NO_3^{-1})$ (±0.9‰ versus ±3.8‰)
- Underestimate the mean of $\Delta^{17}O(NO_3^-)$ during the wintertime haze events (27‰ versus 30‰).
- Cannot reproduce the observed positive relationship between and PM_{2.5}.

Relationship between $PM_{2.5}$ and $\Delta^{17}O(nitrate)$

Modeled decreasing $\Delta^{17}O(\text{nitrate})$ with increasing $PM_{2.5}$ driven by increased nitrate formation from heterogeneous uptake of NO_2

2019-12-4

Becky Alexander

Model sensitivity simulations

+ Cloud Chem (+ updates to γ_{N205} and γ_{N02})

- Current models might have underestimated chemical production of nitrate in cloud while overestimating the contribution from aerosol-phase reactions.
- We follow the proposed corrections from Holmes et al. (2019).

+ CI Chem

- N_2O_5 update to form nitryl chloride (CINO₂) is a source of nitrate and Cl radical, recycles NOx.
- We adopt the new chlorine chemistry scheme and anthropogenic inventory used in Wang et al. (2019).

+ Nitrate photolysis

- Studies found that nitrate in aerosol-phase can photolyze much more quickly than in gas-phase. Model showed that this photolysis reaction can affect NO_y distribution and ozone burden in global scale –We implement the nitrate photolysis parametrization from *Kasibhatla et al.* (2018)

+ decreased heterogeneous HO₂ uptake

- Restrict aerosol HO₂ uptake to metal-containing aerosol only
- Black carbon + dust / Black carbon only

2019-12-4

Model sensitivity simulations

+ Cloud Chem (+ updates to γ_{N205} , γ_{N02} , and γ_{N03})

- Current models might have underestimated chemical production of nitrate in cloud while overestimating the contribution from aerosol-phase reactions.
- We follow the proposed corrections from Holmes et al. (2019).

+ CI Chem

- N_2O_5 update to form nitryl chloride (CINO₂) is a source of nitrate and Cl radical, recycles NOx.
- We adopt the new chlorine chemistry scheme and anthropogenic inventory used in Wang et al. (2019).

+ Nitrate photolysis

- Studies found that nitrate in aerosol-phase can photolyze much more quickly than in gas-phase. Model showed that this photolysis reaction can affect NO_y distribution and ozone burden in global scale –We implement the nitrate photolysis parametrization from *Kasibhatla et al.* (2018)

+ decreased heterogeneous HO₂ uptake

- Restrict aerosol HO₂ uptake to metal-containing aerosol only
- Black carbon + dust / Black carbon only

Nitrate production mechanisms: +Cloud chemistry

Clean

2019-12-4

Polluted

Becky Alexander

Cloud NO_y chemistry + updates to γ_{N2O5} and γ_{NO2} yield relatively more heterogeneous N₂O₅ chemistry and less heterogeneous NO₂ uptake. N₂O₅ hydrolysis dominants nitrate production pathway in polluted and clean atmosphere.

Nitrate concentrations and NOR

"+ Cloud Chem" reduces nitrate concentrations (~+17%) and NOR (+0.13) in Beijing in model and brings it closer to the observed levels

Nitrate Concentration

Observed surface nitrate [$\mu g m^{-3}$]

1.0 0.8 NOR 0.6 Modeled 0.4 0.2 4 0.0 0.0 0.2 0.4 0.6 0.8 1.0

Nitrogen Oxidation Ratio (NOR)

$\Delta^{17}O(\text{nitrate})$:+Cloud chemistry

PM_{2.5}[μg m⁻³]

+Cloud chem increases mean Δ^{17} O(nitrate) slightly (by 0.3‰), but does not reproduce relationship between observed Δ^{17} O(nitrate) and PM_{2.5}

HONO

• HONO (Nitrous acid) is one of the products of some NO₂ hydrolysis. It readily undergoes photolysis and produces OH radicals, which promotes oxidation of other species.

Heterogeneous NO₂ uptake and HONO

- Polluted conditions increase nitrate formation via heterogeneous uptake of NO₂, even with updated (reduced) γ_{NO2} . This drives the decrease in Δ^{17} O(nitrate) with increasing PM_{2.5}, the opposite trend of the observations.
- Yield of NO₂ + H₂O → 0.5HNO₃ + 0.5HONO is uncertain and may be pH-dependent
- + Cloud Chem + 100% HONO (+ updates to γ_{N205} and γ_{N02})
 - Same as +Cloud Chem but with NO₂ + $H_2O \rightarrow HONO$

2019-12-4

Nitrate production mechanisms: +Cloud chemistry + 100%HONO

Cloud NO_v chemistry + 100% HONO does not change nitrate production rates.

N_2O_5 uptake limited by N_2O_5 and ozone abundance

N₂O₅ (ppbv)

Observed O₃

Model underestimates N_2O_5 because it underestimates ozone.

2019-12-4

AMA Conference

24

Heterogeneous HO₂ uptake impacts ozone

A two-pollutant strategy for improving ozone and particulate air quality in China [2019]

Ke Li^{1,2}, Daniel J. Jacob[©]^{2*}, Hong Liao[®]^{3*}, Jia Zhu³, Viral Shah², Lu Shen², Kelvin H. Bates[®]², Qiang Zhang⁴ and Shixian Zhai²

Modeled O₃ increase after removing heterogeneous HO₂ uptake

Laboratory experiments show that:

- $\gamma_{HO2} = 0.1 0.3$ [e.g., Taketani et al., 2012]
- Heterogeneous HO₂ uptake catalyzed by Cu-Fe redox:

Figure from *Mao et al.* [2013]

2019-12-4

Model sensitivity simulations

+ Cloud Chem (+ updates to γ_{N205} and γ_{N02})

- Current models might have underestimated chemical production of nitrate in cloud while overestimating the contribution from aerosol-phase reactions.
- We follow the proposed corrections from Holmes et al. (2019).

+ CI Chem

- N_2O_5 update to form nitryl chloride (CINO₂) is a source of nitrate and Cl radical, recycles NOx.
- We adopt the new chlorine chemistry scheme and anthropogenic inventory used in Wang et al. (2019).

+ Nitrate photolysis

- Studies found that nitrate in aerosol-phase can photolyze much more quickly than in gas-phase. Model showed that this photolysis reaction can affect NO_y distribution and ozone burden in global scale -we implement the nitrate photolysis parametrization from *Kasibhatla et al.* (2018)

+ decreased heterogeneous HO₂ uptake

- Restrict aerosol HO₂ uptake to metal-containing aerosol only
- Black carbon + dust / Black carbon only

N_2O_5 and ozone : reduced HO_2 uptake

N₂O₅ (ppbv)

O₃ (ppbv)

Observed O₃

Conclusions

- $\Delta^{17}O(\text{nitrate})$ sensitive to relative importance of nitrate production mechanisms. Observations in Beijing suggest too high NO₂ + H₂O and too low N₂O₅ + H₂O in polluted days in the model.
- Overestimate of NO₂ + H₂O corrected by updating γ_{NO2} based on recent literature values. However, underestimate of N₂O₅ hydrolysis cannot be reconciled by changes to γ_{N2O5} because it is limited by N₂O₅ abundance. N₂O₅ formation in the model is in turn limited by O₃, which is also underestimated.
- Limiting heterogeneous HO₂ uptake ($\gamma_{HO2} = 0.2$) to metal-containing aerosol increased modeled N₂O₅ and ozone abundance but still underestimates ozone, N₂O₅ and observed $\Delta^{17}O(NO_3^{-})$.

AGS 1644998

28

Extra slides

Nitrate production mechanisms: +Cloud chemistry $-\gamma_{HO2}$

Nitrate concentrations and NOR: reduced HO₂ uptake

"reduced HO₂ uptake" increases nitrate concentrations (~+25%) and NOR (+0.14) in Beijing in model worsening the high bias.

Reactions affected by the model updates