Heterogeneous production of nitrate in extreme haze

Yuk Chun Chan, Becky Alexander
Department of Atmospheric Sciences
University of Washington

Christopher D. Holmes, Tomás Sherwen, Shuting Zhai, Xuan Wang, Mat Evans
China PM$_{2.5}$ is underestimated in air quality models

Much of this underestimate in PM$_{2.5}$ is thought to be due to a model low bias in sulfate/HMS.

In contrast, the nitrate mass fraction is overestimated in models.
Importance of nitrate formation in Beijing air

- Nitrate is one of the major inorganic aerosol species (10-15% in winter in Beijing).
- Nitrate is becoming more important during wintertime haze events in China after a national regulation of SO$_2$ emission was introduced.
- Models have high bias relative to observed nitrate concentrations. It is thought that most nitrate forms through heterogeneous chemistry in winter.
- Heterogeneous chemistry of NO$_y$ may influence radical budgets (via HONO and ClNO$_2$ formation)
- …and thus affect the production rate of O$_3$, organic aerosols and sulfate.
Heterogeneous NOₓ chemistry as a source of HONO?

Fractional contributions of sulfate formation pathways

Increase in gas-phase sulfate production (SO₂ + OH) from clean (19%) to polluted (34%) conditions due to increase in OH resulting from production of HONO from heterogeneous uptake of NO₂ in the model.

Shao et al. [2019]
Nitrate formation in Beijing in GEOS-Chem: $\Delta^{17}O$(nitrate)

Emission of NO$_x$ (NO+NO$_2$)

Tropospheric chemistry of NO$_y$

Reaction with low $\Delta^{17}O$

Reaction with high $\Delta^{17}O$

Conversion to NO$_3^-$ (aerosol) from HNO$_3$ (g)

Emission of NO$_x$ (NO+NO$_2$)

$\text{NO}_2 + \text{O}_3 \rightarrow \text{NO}_3$ (98%)

$\text{NO}_2 + \text{HO}_2 \rightarrow \text{HNO}_3$ (2%)

$\text{NO}_2 + \text{hv} \rightarrow \text{NO}_3 + \text{O}_2$ (trace)

$\text{NO}_2 + \text{RO}_2 \rightarrow \text{RONO}_2$ (trace)

$\text{NO}_2 + \text{NO} \rightarrow \text{NO}_3$ (trace)

$\text{NO}_3 + \text{HO}_3 \rightarrow \text{HNO}_3$ (trace)

$\text{NO}_3 + \text{H}_2\text{O} \rightarrow \text{HNO}_3 + \text{H}_2\text{O}$ (trace)

$\text{NO}_3 + \text{HC} \rightarrow \text{N}_2\text{O}_5 + \text{H}_2\text{O}$ (trace)

$\text{HNO}_3 (g)$

Conversion to NO$_3^-$ (aerosol) from HNO$_3$ (g)
Heterogeneous nitrate formation: $\Delta^{17}O($nitrate$)$

$$\Delta^{17}O(nitrate) = 25.5\%$$

$$\Delta^{17}O(nitrate) = 31.2\%$$

$$\Delta^{17}O(nitrate) = 33.8\%$$

$$\text{NO}_2 + \text{NO}_3 \rightarrow \text{N}_2\text{O}_5$$

$$\text{H}_{2}\text{O}$$

$$\text{HNO}_3$$

$$\text{HNO}_3$$

$$2\text{HNO}_3$$

$$\text{H}_2\text{O}$$

$$\text{Cl}^{-}$$
Heterogeneous nitrate formation: $\Delta^{17}O$(nitrate)

$\text{NO}_2 + \text{NO}_3 \rightarrow \text{N}_2\text{O}_5$

$\Delta^{17}O$(nitrate) = 25.5‰

$\text{H}_2\text{O} + \text{HNO}_3 \rightarrow 2\text{HNO}_3$

$\Delta^{17}O$(nitrate) = 31.2‰

$\text{HNO}_3 + \text{ClNO}_2$

$\Delta^{17}O$(nitrate) = 33.8‰
Research questions

1. What is the role of heterogeneous chemistry of reactive nitrogen (NO\textsubscript{y}) for nitrate formation during winter extreme haze events in northern China? What is the dominating mechanism?

2. What are the implications of heterogeneous NO\textsubscript{y} chemistry for radical formation in polluted, urban air?

3. What are the implications for mitigation strategies for improving air quality in Asian metropolitan regions?
GEOS-Chem (GC) 3D global chemical transport model

- A state-of-the-art numeric global model developed for simulating tropospheric chemistry

- Driven by GEOS-FP meteorological data assimilation products (native resolution: 0.5° latitude x 0.625° longitude x 72 vertical levels)

- Simulates the HO$_x$-NO$_x$-VOC-ozone-halogen-aerosol chemistry in the troposphere dynamically

- Calculates aerosol thermodynamical equilibrium using ISORROPIA II module

- Spatial resolution for the GC simulations: 4° latitude x 5° longitude and 47 vertical levels

Measurements and observations

• Two independent datasets of $\Delta ^{17}O(\text{NO}_3^-)$ measurements for aerosol sampled in Beijing conducted at UW IsoLab:

 1. From He et al. (2018); Samples collected during several hazy episodes in Oct 2014 to Jan 2015;
 2. From Wang et al. (2019); Samples collected every Wednesday and Sunday in 2014;

• Ground-based measurement of other gas species (e.g., NO$_2$, ozone) from the same studies above

• Ground-based measurement of HONO concentration in Jinan in 2015-16 winter (another major city in northern China) from Li et al. (2018)

• Ground-based measurement of N$_2$O$_5$ concentration in Beijing in Nov. – Dec. 2018 (Wei Zhou, CAS, Beijing).
How does the standard GC model perform?

- Overestimates the surface concentration of nitrate in Beijing. (Normalized mean bias: +76.8%)

- Overestimates nitrogen oxidation ratio (NOR, +0.29), suggesting too high nitrate production rates (or underestimates other NO$_x$ loss processes)

\[
\frac{[\text{HNO}_3(\text{g})] + [\text{p-NO}_3^-]}{[\text{HNO}_3(\text{g})] + [\text{p-NO}_3^-] + [\text{NO}_2]} \]

Graphs showing modeled and observed surface nitrate and NOR concentrations.
How does the standard GC model perform?

- Underestimates the variability of $\Delta^{17}O(\text{NO}_3^-)$ ($\pm 0.9\%$ versus $\pm 3.8\%$).
- Underestimate the mean of $\Delta^{17}O(\text{NO}_3^-)$ during the wintertime haze events (27‰ versus 30‰).
- Cannot reproduce the observed positive relationship between $\text{PM}_{2.5}$ and $D^{17}O(\text{NO}_3^-)$.
How does the standard GC model perform?

- Underestimates the variability of $\Delta^{17}O(\text{NO}_3^-)$ ($\pm 0.9\%o$ versus $\pm 3.8\%o$)
- Underestimate the mean of $\Delta^{17}O(\text{NO}_3^-)$ during the wintertime haze events ($27\%o$ versus $30\%o$).
- Cannot reproduce the observed positive relationship between and PM$_{2.5}$.

![Graph showing observed vs modeled $\Delta^{17}O(\text{NO}_3^-)$ and PM$_{2.5}$](image-url)
Relationship between PM$_{2.5}$ and Δ^{17}O(nitrate)

Modelled decreasing Δ^{17}O(nitrate) with increasing PM$_{2.5}$ driven by increased nitrate formation from heterogeneous uptake of NO$_2$.

$\text{NO}_2 + \text{OH}$ $\text{N}_2\text{O}_5 + \text{H}_2\text{O}$ $\text{NO}_2 + \text{H}_2\text{O}$ Other

Clean 33.9% 39.5% 22.0%

Polluted 31.7% 24.6% 37.6%

HNO_3 production [cm$^{-3}$ s$^{-1}$]
Model sensitivity simulations

+ Cloud Chem (+ updates to γ_{N2O5} and γ_{NO2})

- Current models might have underestimated chemical production of nitrate in cloud while overestimating the contribution from aerosol-phase reactions.
- We follow the proposed corrections from Holmes et al. (2019).

+ Cl Chem

- N_2O_5 update to form nitryl chloride (CINO$_2$) is a source of nitrate and Cl radical, recycles NOx.
- We adopt the new chlorine chemistry scheme and anthropogenic inventory used in Wang et al. (2019).

+ Nitrate photolysis

- Studies found that nitrate in aerosol-phase can photolyze much more quickly than in gas-phase. Model showed that this photolysis reaction can affect NO$_y$ distribution and ozone burden in global scale.
- We implement the nitrate photolysis parametrization from Kasibhatla et al. (2018)

+ decreased heterogeneous HO$_2$ uptake

- Restrict aerosol HO$_2$ uptake to metal-containing aerosol only
- Black carbon + dust / Black carbon only

Becky Alexander

IAMA Conference

2019-12-4
Model sensitivity simulations

+ Cloud Chem (+ updates to $\gamma_{N_2O_5}$, γ_{NO_2}, and γ_{NO_3})
 - Current models might have underestimated chemical production of nitrate in cloud while overestimating the contribution from aerosol-phase reactions.
 - We follow the proposed corrections from Holmes et al. (2019).

+ Cl Chem
 - N$_2$O$_5$ update to form nitryl chloride (CINO$_2$) is a source of nitrate and Cl radical, recycles NOx.
 - We adopt the new chlorine chemistry scheme and anthropogenic inventory used in Wang et al. (2019).

+ Nitrate photolysis
 - Studies found that nitrate in aerosol-phase can photolyze much more quickly than in gas-phase. Model showed that this photolysis reaction can affect NO$_y$ distribution and ozone burden in global scale
 - We implement the nitrate photolysis parametrization from Kasibhatla et al. (2018)

+ decreased heterogeneous HO$_2$ uptake
 - Restrict aerosol HO$_2$ uptake to metal-containing aerosol only
 - Black carbon + dust / Black carbon only
Nitrate production mechanisms: +Cloud chemistry

Cloud NO\textsubscript{y} chemistry + updates to \(\gamma\text{N}_2\text{O}_5\) and \(\gamma\text{NO}_2\) yield relatively more heterogeneous \(\text{N}_2\text{O}_5\) chemistry and less heterogeneous NO\textsubscript{2} uptake. \(\text{N}_2\text{O}_5\) hydrolysis dominants nitrate production pathway in polluted and clean atmosphere.
Nitrate concentrations and NOR

"+ Cloud Chem" reduces nitrate concentrations (~+17%) and NOR (+0.13) in Beijing in model and brings it closer to the observed levels.
$\Delta^{17}O$(nitrate): +Cloud chemistry

+Cloud chem increases mean $\Delta^{17}O$(nitrate) slightly (by 0.3‰), but does not reproduce relationship between observed $\Delta^{17}O$(nitrate) and PM$_{2.5}$
HONO

- HONO (Nitrous acid) is one of the products of some NO₂ hydrolysis. It readily undergoes photolysis and produces OH radicals, which promotes oxidation of other species.
Heterogeneous NO$_2$ uptake and HONO

- Polluted conditions increase nitrate formation via heterogeneous uptake of NO$_2$, even with updated (reduced) γ_{NO_2}. This drives the decrease in Δ^{17}O(nitrate) with increasing PM$_{2.5}$, the opposite trend of the observations.
- Yield of NO$_2$ + H$_2$O \rightarrow 0.5HNO$_3$ + 0.5HONO is uncertain and may be pH-dependent

+ Cloud Chem + 100% HONO (+ updates to $\gamma_{\text{N}_2\text{O}_5}$ and γ_{NO_2})

- Same as +Cloud Chem but with NO$_2$ + H$_2$O \rightarrow HONO
Nitrate production mechanisms: +Cloud chemistry + 100%HONO

Clean

Polluted

Cloud NO\textsubscript{y} chemistry + 100% HONO does not change nitrate production rates.
N$_2$O$_5$ uptake limited by N$_2$O$_5$ and ozone abundance

Model underestimates N$_2$O$_5$ because it underestimates ozone.
Heterogeneous \(\text{HO}_2 \) uptake impacts ozone

Laboratory experiments show that:
- \(\gamma_{\text{HO}_2} = 0.1 - 0.3 \) [e.g., Taketani et al., 2012]
- Heterogeneous \(\text{HO}_2 \) uptake catalyzed by Cu-Fe redox:

\[\gamma_{\text{HO}_2} = 0.2 \] for all aerosol types

Figure from Mao et al. [2013]
Model sensitivity simulations

+ Cloud Chem (+ updates to $\gamma_{N_2O_5}$ and γ_{NO_2})

- Current models might have underestimated chemical production of nitrate in cloud while overestimating the contribution from aerosol-phase reactions.
- We follow the proposed corrections from Holmes et al. (2019).

+ Cl Chem

- N_2O_5 update to form nitryl chloride (CINO$_2$) is a source of nitrate and Cl radical, recycles NOx.
- We adopt the new chlorine chemistry scheme and anthropogenic inventory used in Wang et al. (2019).

+ Nitrate photolysis

- Studies found that nitrate in aerosol-phase can photolyze much more quickly than in gas-phase. Model showed that this photolysis reaction can affect NO$_y$ distribution and ozone burden in global scale.
- We implement the nitrate photolysis parametrization from Kasibhatla et al. (2018).

+ decreased heterogeneous HO$_2$ uptake

- Restrict aerosol HO$_2$ uptake to metal-containing aerosol only
- Black carbon + dust / Black carbon only
N$_2$O$_5$ and ozone: reduced HO$_2$ uptake

N$_2$O$_5$ (ppbv)

Modeled

-32%
-53%
-52%
-40%

Observed

Model simulations for Beijing during Nov-Dec 2014

O$_3$ (ppbv)

-65%
-56%

Modeled O$_3$

Observed O$_3$
Conclusions

• \(\Delta^{17}O(\text{nitrate})\) sensitive to relative importance of nitrate production mechanisms. Observations in Beijing suggest too high \(\text{NO}_2 + \text{H}_2\text{O}\) and too low \(\text{N}_2\text{O}_5 + \text{H}_2\text{O}\) in polluted days in the model.

• Overestimate of \(\text{NO}_2 + \text{H}_2\text{O}\) corrected by updating \(\gamma_{\text{NO}_2}\) based on recent literature values. However, underestimate of \(\text{N}_2\text{O}_5\) hydrolysis cannot be reconciled by changes to \(\gamma_{\text{N}_2\text{O}_5}\) because it is limited by \(\text{N}_2\text{O}_5\) abundance. \(\text{N}_2\text{O}_5\) formation in the model is in turn limited by \(\text{O}_3\), which is also underestimated.

• Limiting heterogeneous \(\text{HO}_2\) uptake \((\gamma_{\text{HO}_2} = 0.2)\) to metal-containing aerosol increased modeled \(\text{N}_2\text{O}_5\) and ozone abundance but still underestimates ozone, \(\text{N}_2\text{O}_5\) and observed \(\Delta^{17}O(\text{NO}_3^-)\).
Extra slides
Nitrate production mechanisms: +Cloud chemistry –γ_{\text{HO}_2}

![Graph showing nitrate production mechanisms in clean and polluted conditions.](image)

- **Clean**:
 - + Cloud Chem: 31.4% HO2, 30.9% HNO3, 13.6% PM2.5, 13.3% [‰]
 - + Cloud Chem & reduced HO2 uptake: 31.5% HO2, 41.2% HNO3, 14.8% PM2.5, 11.5% [‰]

- **Polluted**:
 - + Cloud Chem: 30.7% HO2, 50.8% HNO3, 7.5% PM2.5, 7.5% [‰]
 - + Cloud Chem & reduced HO2 uptake: 33.8% HO2, 50.7% HNO3, 7.4% PM2.5, 7.2% [‰]
Nitrate concentrations and NOR: reduced HO$_2$ uptake

"reduced HO$_2$ uptake" increases nitrate concentrations (~+25%) and NOR (+0.14) in Beijing in model worsening the high bias.

Modeled surface nitrate [µg m$^{-3}$] vs Observed surface nitrate [µg m$^{-3}$]

Modeled NOR vs Observed NOR
Reactions affected by the model updates

- NO
- NO₂
- NO₃
- HNO₃ (g)
- O₃
- HO₂/RO₂
- XO
- hv
- RO₂
- XNO₃
- NO₁
- N₂O₅
- HC
- MTN/ISOP
- RONO₂

Heterogeneous reactions

Cloud Chem +