Modeling constraints of aerosol layer height and nighttime aerosol optical depth from space

Jun Wang

James E. Ashton Professor College of Engineering 07 Dec. 2023

International Aerosol Modeling Algorithms Conference UC-Davis, 07 December 2023

University of Iowa

Three elements of fires: can their interaction be revealed from space?

Emissions vary with fire life cycle

Nature, 1979 Biomass burning as a source of atmospheric gases CO, H₂, N₂O, NO, CH₃Cl and COS

Paul J. Crutzen, Leroy E. Heidt, Joseph P. Krasnec, Walter H. Pollock & Wolfgang Seiler*

National Center for Atmospheric Research, PO Box 3000, Boulder, Colorado 80307

Paul Jozef Crutzen (1933–2021) Recipient of 1995 Nobel Prize in Chemistry

Biomass Burning in the Tropics: Impact on Atmospheric Chemistry and Biogeochemical Cycles

PAUL J. CRUTZEN AND MEINRAT O. ANDREAE

Modified Combustion Efficiency & Its Importance $CO_2 / (CO+CO_2) \rightarrow Emission Factor$

Liu et al., [2017]

Pokhrel et al., [2016]

How emission factors are treated in fire emission estimates?

- Static for the same type; no consideration of wind speed, relative humidity, life cycle
 of the fire
- Schemes for surface/biome types are oversimplified and vary in different emission algorithms
 GFED4s
 FLAMBE

Specie	Savanna	Boreal forest	Temperate forest	Tropical forest	Peat	Agriculture	Reid et al., 2010
CO ₂	1686	1489	1647	1643	1703	1585	Light Grasses/tundra
CO	63	127	88	93	210	102	Grasslands/Savannah
CH ₄	1.94	5.96	3.36	5.07	20.8	5.82	Correcto /We a day Charalt
NMHC	3.4	8.4	8.4	1.7	1.7	9.9	Cerrado/woody Shrub
H ₂	1.7	2.03	2.03	3.36	3.36	2.59	Crops
NO_x (as NO)	3.90	0.90	1.92	2.55	1.00	3.11	Temperate/Boreal-Low
N_2O	0.20	0.41	0.16	0.20	0.20	0.10	Temperate/Borear-Low
PM2.5	7.2	15.3	12.9	9.1	9.1	6.3	Temperate-High
6 biome types							Tropical Forest
van der Werf et al., 2017.							Wetland
,							Davadama

Boundary regions

9 biome types

Light is an indication of fire combustion phase/completeness

flaming

smoldering

- Combustion phase depends on fuel content, relative humidity, temperature, & reaction interface.
- If the combustion happens heterogeneously at the surface of solid fuels (vegetation and wood), the combustion is smoldering producing incomplete-oxidized products
- If oxidation happens homogeneously between oxygen in the air and the gas pyrolyzate, combustion products are soot and complete-oxidized gases. These products absorb enough energy during the combustion process leading them to emit visible radiation as a flame (Rein 2009; Sato et al. 1969).

Suomi-NPP Launch 28 Oct. 2011

Opens a new era of low light detection for remote sensing of fires, aerosols, and beyond

I was there watching the launch and took this picture! Vandenberg Air Force Base in California

Wang, J., S. Roudini, E. J. Hyer, X. Xu, M. Zhou, L. Castro Garcia, J. S. Reid, D. Peterson, A. Da Silva, Detecting nighttime fire combustion phase by hybrid application of visible and infrared radiation from Suomi NPP VIIRS, *Remote Sensing of Environment*, 237, 111466, 2020.

Definitions

- Fire Radiative Power: **FRP**, total power from all wavelengths due to all fires in a pixel.
- Fire Visible Light Power: **VLP**, radiative power in the visible due to all fires in a pixel
- Visible Energy Fraction VEF:

 $VEF = \frac{VLP \times \Delta t}{FRP \times \Delta t} = \frac{VLP}{FRP}$

• FRP is NOT necessarily a good indicator of flaming and MCE; VEF has more potential to characterize MCE.

First global analysis of saturation artifacts in the VIIRS infrared channels and the effects of sample aggregation, *IEEE Geoscience and Remote Sensing Letters*, Polivka et al., 2015.

A Sub-pixel-based calculate of fire radiative power from MODIS observations: 2. Sensitivity analysis and potential fire weather application, *Remote Sensing Environment*, Peterson & Wang, 2013.

Insights for Fire MCE Climatology as revealed by Visible Energy Fraction (VEF)

Our research algorithm: Firelight Detection Algorithm (FILDA)

VEF is indicative of MCE

- VEF spatial distribution clearly shows the impact of biome types on fire MCE
- FRP has difficulty to describe MCE variation, such as shrubland vs. evergreen forests

Further (indirect) validation

VEF has the potential to better predict fire growth High VEF -> flaming → predicting movement of fire lines

What is left after fire lines is the smoldering fires

VEF & MCE variations show meteorological impact on combustion

Synoptic map at 700 mb.

10 am local each day

Diablo Winds

A new satellite data product: Fire MCE

Now in production. Soon to be available at: <u>https://viirsland.gsfc.nasa.gov/Products/NASA/NASAprod.html</u> Product prefix: VNP47IMG; VJ147IMG; VNP47MOD; VJ147MOD

SensorProductSequenceResolution.AYearDoy.Overpass.Collection.ProcessTime.nc

https://esmc.uiowa.edu/filda/filda.php

FILDA-2

Introduction

Physics Background

Algorithm

Outputs

Recommendation

Why spots in cities?

Fire Light Detection Algorithm Version 2 (FILDA-2) Modified Combustion Efficiency (MCE) User Guide V1.0

This guide is living document of the FIre Light Detection Algorithm Version 2 (FILDA-2) product based on the Visible Infrared Imaging Radiometer Suite. It is revised as progress is made in the development of these products. The purpose of this documentation is to give the potential user an understanding of the VNP/VJ147 products and the current state of the data in those products.

FILDA-2 is an experimental advanced fire product that provides fire detection and retrievals of Radiative Power (FRP), fire Visible Energy Fraction (VEF), and Modified Combustion Efficiency (MCE) at nighttime in 375 m and 750 m resolution.

Note: The VNP/VJ147 FILDA fire modified combustion efficiency product is current being integrated NASA LAND SIPS at GSFC. The processed product will be available from the LP DAAC.

Importance of nighttime fires

Article Warming weakens the night-time barrier to global fire

Nature, 2022

https://doi.org/10.1038/s41586-021-04325-1 Jennifer K. Balch¹², John T. Abatzoglou^{3,9}, Maxwell B. Joseph^{1,4,9}, Michael J. Koontz^{1,9}, Adam L. Mahood^{1,2,9}, Joseph McGlinchy^{1,5,9}, Megan E. Cattau⁶ & A. Park Williams^{7,8}

Received: 3 July 2020

Globally, daily minimum VPD (vapor pressure deficit) increased by 25 per cent from 1979 to 2020.

Large wildfire driven increases in nighttime fire activity observed across CONUS from 2003–2020 RSE, 2022

Patrick H. Freeborn^{a,*}, W. Matt Jolly^a, Mark A. Cochrane^b, Gareth Roberts^c

From 2003–2020, MODIS detected significant (p < 0.01) increasing trends in nighttime wildfire fire activity, with a +54%, +42% and +21% increase in the annual nighttime sum of FRP, annual nighttime active fire pixel counts and annual mean nighttime per-pixel values of FRP, respectively, detected in the latter half of the study period.

Retrieval of smoke AOD at night from backscattered moonlight measured by VIIRS over rural areas

Wang, J., M. Zhou, X. Xu, S. Roudini, S. Sander, T. Pongetti, S. Miller, J. Reid, E. Hyer, R. Spurr, Development of a nighttime shortwave radiative transfer model for remote sensing of nocturnal aerosols and fires from VIIRS, *Remote Sensing of Environment*, 241, 111727, 2020.

Zhou, M., J. Wang, X. Chen, X. Xu, P. R. Colarco, S. D. Miller, J. S. Reid, S. Kondraguntah, D. M. Gilese, and B. Holben, Nighttime smoke aerosol optical depth over U.S. rural areas, first retrieval from VIIRS moonlight observations, *Remote Sensing of Environment*, in press, 2021.

2020 Fire case – Day and Night AOD Map

2020 Fire case – Day and Night AOD Map

AERONET Daytime Site
AERONET Nighttime Site

2020 Fire case – Day and Night AOD Map

2020 Fire case – Day and Night AOD Map

Aerosol Optical Centroid Height (AOCH) data product

Level-2 data product:

DSCOVR_EPIC_L2_AOCH_01 data production in ASDC/LaRC.

Thanks to Marshall Sutton and EPIC project team in GSFC to make the RTO happen.

Image: Constraint of the image: Con

Description

DSCOVR_EPIC_L2_AOCH_01 is the aerosol optical centroid height (AOCH) product for global smoke and dust aerosols retrieved from oxygen A-band (764 nm) and B-band (688 nm) measured by Earth Polychromatic Imaging Camera (EPIC) onboard the Deep Space Climate Observatory (DSCOVR) satellite. The ultraviolet aerosol index (UVAI) is also retrieved using EPIC 340 and 388 nm channels. The retrieval algorithm assumes a quasi-Gaussian aerosol vertical profile shape and retrieves aerosol optical depth (AOD) and the height at which the aerosol extinction peaks (e.g., AOCH). Cloud mask is conducted through the spatial variability tests at 443 and 551 nm and the brightness tests with the prescribed threshold of TOA reflectance at 443 and 680 nm for land and 443, 680, and 780 nm over water. The water pixels with a sun glint angle smaller than 30 are screened out. AOD is then retrieved from EPIC atmospheric window channel 443 nm, and the AOCH is derived subsequently based on the ratios of oxygen A and B bands to their corresponding neighboring continuum bands (764/780 nm and 688/680 nm). The surface reflectance for water surface comes from the GOME-2 Lambert-equivalent reflectivity (LER) product. A 10-year climatology of Lambertian surface reflectance from MODIS BRDF/Albedo product (MCD43) is applied for retrievals over the land surface. The global aerosol types are classified based on their sources at different regions, and their corresponding aerosol single scattering properties are defined based on AERONET climatology for each region. The retrieval algorithm is based on the lookup table constructed by the Unified and Linearized Vector Radiative Transfer Model (UNL-VRTM).

E DOI

10.5067/EPIC/DSCOVR/L2_AOCH.001

https://asdc.larc.nasa.gov/project/DSCOVR/DSCOVR EPIC_L2_AOCH_01

At O2 absorption band:

I₁> I₂, DOPL₁ < DOLP₂(in most cases)

More demonstration

 $AOCH_{CALIOP} = \frac{\sum_{i=1}^{n} \beta_{ext,i} \Delta Z_i Z_i}{\sum_{i=1}^{n} \beta_{ext,i} \Delta Z_i}$ VIIRS CALIOP This study KNMI 2019-07-09 Smoke in Alaska (c) (b) AOCH-O2AB (7/9 21:23) (d) ALH-O2A (7/9 21:23) 12 Altitude (km) 10 160°W 160°W 160°W Lat (°N) 61.5 Lon (°E) -155.6 62.4 63.3 64.2 65.1 66.0 2018-08-10 Smoke in Canada and US -156.2 -156.9-157.7 -158.5 -159.4 (g) (f) AOCH-O2AB (8/10 18:43) (h) ALH-O2A (8/10 18:43) 12 Altitude (km) Lat (°N) 46.0 47.5 49.0 50.5 52.0 -94.7 53.5 Lon (° E) -92.2 -93.4 -94.0 -95.4 120°W 100°W 120°W 100°W 120°W 100°W 2019-07-28 Smoke in Siberia (k) (j) (1) AOCH-O2AB (7/28 03:30) 14 ALH-O2A (7/28 03:30) 12 Altitude (km) 00°E 120°E 00°E 120°E 120°E Lat (°N) 59.5 61.0 62.5 131.4 64.0 65.5 67.0

Lon (° E) 133 5

132.5

130.2

128.8

127.3

Chen et al., 2021, RSE.

(a)

60°N

60°N

50°N

(i)

100°E

60°N

Improvement on prediction and analysis

• Aerosol layer height is one of the most needed information air quality mangers wants (based on HAQAST group discussion on air quality forecast in smoke conditions).

Chen, Wang, et al., 2021.

Case Demonstration

Air quality forecast is needed by the state & local communities to make advisories & decisions for mitigating public exposure to air pollution.

Exceptional event analysis requires "satellite imagery of plume with evidence of the plume impacting the ground".

> Chen, Wang, et al., 2021.

Ō

Models

Precipitation

Air Quality Reflection: Wednesday August 16, 2023

AirNow AQI

GPM, 16 August 2023

NASA WorldView

Observations <u>http://fireaq.uiowa.edu</u> for weekly briefing of FireAQ this summer

00

Nebraska UNITED

AOCH algorithm is now being implemented for TEMPO and planned for GEO-XO

2030s

Summary

- VIIRS Fire MCE product (including FRP)
 - Now in production. Soon to be available at: <u>https://viirsland.gsfc.nasa.gov/Products/NASA/NASAprod.html</u>
 - Product prefix: VNP47IMG; VJ147IMG; VNP47MOD; VJ147MOD
 - https://esmc.uiowa.edu/filda/filda.php
- AOCH and AOD data product from EPIC
 - <u>https://asdc.larc.nasa.gov/project/DSCOVR/DSCOVR_EPIC_L2_AOCH_01</u>
 - https://epic.gsfc.nasa.gov/science/products/aoch
- AOCH and AOD research data product from TROPOMI
 - http://esmc.uiowa.edu:3838/tropomi_aoch/

Thank you! Group members

- Enhancement of Nighttime Fire Detection and Combustion Efficiency Characterization using Suomi-NPP and NOAA20 VIIRS Instruments, *IEEE Transactions on Geoscience and Remote Sensing*, vol. 61, 4402420, 2023.
- Nighttime smoke aerosol optical depth over U.S. rural areas: First retrieval, *Remote Sensing of Environment*, 267, 112717, 2021.
- Development of a nighttime shortwave radiative transfer model for remote sensing of nocturnal aerosols and fires from VIIRS, *Remote Sensing of Environment*, 241, 111727, 2020.
- Nighttime smoke aerosol optical depth over U.S. rural areas, first retrieval from VIIRS moonlight observations, *Remote Sensing of Environment*, 267, 112717, 2021.
- Potential application of VIRS Day/Night Band for monitoring nighttime surface PM_{2.5} air quality from space, *Atmospheric Environment*, 124, 55–63, 2016.
- Mapping nighttime PM_{2.5} from VIIRS DNB using a linear mixed effects model, *Atmospheric Environment*, 178, 214– 222, 2018.
- Improving Nocturnal Fire Detection with the VIIRS Day-Night Band, IEEE Transactions on Geoscience & Remote Sensing, 9, 5503-5519, 2016

Meng Zhou UMBC & NASA GMAO

Xiaoguang Xu, UMBC

Zhendong Lu, U. Iowa

Xi Chen; U. Iowa

Tom Polivka, Raytheon

Funding support:

NASA, NOAA, DoD, U. lowa

First mapping of nighttime visible AOD over the ocean

First mapping of nighttime visible AOD climatology over the ocean

Number of Days available for retrieval

Validation with AERONET & CALIPSO AOD

What is the retrieval uncertainty? $\pm (0.085 + 10\% \text{ AOD})$

(van Leeuwen and van der Werf 2011)

Instrument Modularity

- Level 1: Instrument
 - Individual components such as sensors, lenses, power supply, processors, networking, connectors
- Level 2: Enclosure
 - Sensor head, umbilical, processing box
 - A standardized enclosure into which the instrument is being installed. Facilitates precise orientation of instrument components and enables standardized I/O connector arrangement
- Level 3: Deployment
 - Rack mounting: For use on OPL Bonanza, MI-2, and most NASA aircraft
 - P3-Pod for use on OPL L-29 and L-39 aircraft (P3 funds)
 - Agile pod for use on OPL L-39 and many new govt flights (approx. \$200k)
 - Cubesat and Smallsat: For space flight (may require removal of enclosure)

Potential characterization of smoldering vs. flaming

