The Roles of Interfacial Energy and Size-Dependent Morphologies of Atmospheric Aerosols

Ryan Schmedding

International Aerosol Modeling Algorithms Conference

The Smallest Aerosol Particles Are The Most Numerous

Smaller Particles May Behave Differently Than Large ones

Kucinski et al., 2019

Surface Effects Can Modify Aerosol Properties

gas phase

5

Real Surfaces Have Thin But Finite Depths

More Idealized System

Surface Tension Can Be Modeled Using AIOMFAC $u_{i}^{surf} = \xi_{i}^{surf} - \sigma \mathcal{A}_{i}$ $\xi_{i}^{surf} = \xi_{i}^{surf,o} + RT\ln(a_{i}^{surf})$ $\mu_i^{surf,o} = \xi_i^{surf,o} - \sigma_i^o \mathcal{A}_i^{surf,o}$ $a_i^{surf} = x_i^{surf} (\gamma_i^{AIOMFAC})^t$ $\mu_i^{surf} = \xi_i^{surf,o} + RT \ln(a_i^{surf}) + \mathcal{A}_i^o \sigma_i^o - \mathcal{A}_i \sigma$ $\mathcal{A}_i^0 \cong \mathcal{A}_i$

 $\frac{RT}{\mathcal{A}_i} \ln\left(\frac{a_i^{surf}}{a_i^{bulk}}\right) + \boldsymbol{\sigma}_i^o = \boldsymbol{\sigma}$

Aston & Herrington, 1994 Lane, 1983

Surface Tension Predictions Match Experimental Data

The Inclusion of Bulk-Surface Partitioning Modifies Cloud Activation Conditions

Interfacial Tension Modeling Is Similar To Surface Tension

$$\frac{RT}{\mathcal{A}_{i}^{int}}\ln\left(\frac{a_{i}^{int}}{a_{i}^{bulk}}\right) + \boldsymbol{\sigma}_{i}^{\boldsymbol{\Theta}} = \boldsymbol{\sigma}^{int}$$

Interfacial Tension Treatments Can Be Simplified

Name

Treatment of Interfacial Tension

No Interfacial Tension	$\sigma^{IF} = 0$
Antonov's Rule	$\sigma^{IF} = \sigma^{\alpha} - \sigma^{\beta}$
Girifalco-Good Equation	$\sigma^{IF} = \sigma^{\alpha} + \sigma^{\beta} - 2\varphi \left(\sigma^{\alpha}\sigma^{\beta}\right)^{\frac{1}{2}}$
AIOMFAC-0.5	$\sigma_i^{IF} = \frac{RT}{\mathscr{A}_i} \ln\left(\frac{a_i^{IF}}{a_i^b}\right); \ \gamma_i^{IF} = \gamma_i^{AIOMFAC^{\frac{1}{2}}}$
AIOMFAC-1.5	$\sigma_i^{IF} = \frac{RT}{\mathscr{A}_i} \ln\left(\frac{a_i^{IF}}{a_i^b}\right); \ \gamma_i^{IF} = \gamma_i^{AIOMFAC^{\frac{3}{2}}}$
AIOMFAC-Geom-Mean	$\sigma_i^{IF} = \frac{RT}{\mathscr{A}_i} \ln\left(\frac{a_i^{IF}}{a_i^b}\right); \ \gamma_i^{IF} = \left(\gamma_i^{\alpha} \gamma_i^{\beta}\right)^{\frac{1}{2}}$

Some Interfacial Tension Treatments Are More Realistic Than Others

There Are Few Measurements of Aerosol Interfacial Tension

Schmedding & Zuend, in prep

Smaller Particles Still Phase Separate, But At Lower Relative Humidities

Conclusions

- AIOMFAC estimated surface tensions agree with bulk measurements
- Including surface tension estimates reduces critical superstaturations necessary for cloud droplet activation in Koehler curves
- Using the Girifalco-Good Equation or geometric mean of activity coefficients gives reasonable values for interfacial tension in aerosol particles
- AIOMFAC predicted relative humidity of phase separation decreases with decreasing particle size

Questions?

Ryan.Schmedding@mail.mcgill.ca