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Aerosol effects are large source of uncertainty in

total anthropogenic forcing
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Aerosol effects are large source of uncertainty in

total anthropogenic forcing
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Particle populations are not easily simulated in
large-scale models
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in global-scale
aerosol schemes

Large-scale aerosol models simplify the
representation of particle size and composition
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Particle populations are not easily simulated in
large-scale models

particle-resolved
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Particle populations are not easily simulated in

large-scale models

particle-resolved
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How well do reduced aerosol schemes
represent particle properties?
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How well do reduced aerosol schemes
represent particle properties?

Consider two factors:
- Simplification of particle mixing state
- Simplification of particle size distributions
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How well do reduced aerosol schemes
represent particle properties?

Consider two factors:
- Simplification of particle mixing state
- Simplification of particle size distributions
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Example: radiative effects of black carbon are
determined by properties of diverse particles

Need optical

Simulations of the global coefficients in

atmosphere are used to each grid cell to

compute direct
forcing

quantify radiative forcing
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Example: radiative effects of black carbon are
determined by properties of diverse particles
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" Chinaet al,, 2013

Need to integrate
over optical cross
sections of diverse
particles to find
optical properties

Need optical
coefficients in
each grid cell to
compute direct
forcing

aerosols and
precursors

L e

]
|
\
|
!
l
|

SO,
Black Carbon

Organic Carbon
Mineral Dust
Radiative adjustment
Aerosol-Cloud

Aircraft

0 0.5 1.0
radiative forcing (W m?)

o

Pacific
Northwes

NATIONAL LABORATORY



Common models predicts strong increase in black
carbon’s light absorption when coated
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Field studies show only weak enhancements in light
absorption by ambient black carbon.

enhancement in light absorption
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How do models misrepresent particles?
Unrealistic treatment of particle morphology
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How do models misrepresent particles?
Unrealistic treatment of particle morphology
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How do models misrepresent particles?
Unrealistic treatment of particle moroholoay
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How do models misrepresent particles?
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How do models misrepresent particles?
Simplify particle size-composition distribution

Particle-resolved
composition
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Ambient aerosol particles
are diverse in size and
composition
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Simulate aerosol evolution in many scenarios with

PartMC-MOSAIC

Dilution with
background Model tracks per-particle
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Aerosol aging simulated under variety of conditions o
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Simulate aerosol evolution in many scenarios with

PartMC-MOSAIC
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How do models misrepresent particles?
Simplify particle size-composition distribution
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How do models misrepresent particles?
Simplify particle size-composition distribution
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How well do reduced aerosol schemes
represent particle properties?
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How well do reduced aerosol schemes
represent particle properties?

Resolution of the mixing state is inadequate.
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How well do reduced aerosol schemes
represent particle properties?

Resolution of the mixing state is inadequate.

What about the size distribution?
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Approach: evaluate aerosol representations
through box model comparisons
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Size distributions simulated by MAM4 diverge

from benchmark with aging

normalized number density
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Differences in size distribution quantified by KL-
divergence

KL-divergence
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Differences between size distributions lead to
differences in CCN activity

fraction activated

LA
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Differences between size distributions lead to
differences in CCN activity
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Largest differences in CCN activity in urban

areas with rapid aging
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How well do reduced aerosol schemes
represent particle properties? Not very well.
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How well do reduced aerosol schemes
represent particle properties? Not very well.

Can we do better?
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How can global models account for the impact of
particle-scale heterogeneity?
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How can global models account for the impact of

particle-scale heterogeneity?

35
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Path forward: surrogate models to bridge
particle-scale and global-scale
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per-particle @ lab-informed modeling per-particle
Chqllenge: composition > absorption

Particle-resolved
model is expensive.

Solution:

Surrogate model that
approximately
reproduces particle-
resolved model
predictions.
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Challenge:
Particle-resolved
model is expensive.

Solution:

Surrogate model that
approximately
reproduces particle-
resolved model
predictions.

per-particle
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Challenge:
Particle-resolved
model is expensive.

Solution:

Surrogate model that
approximately
reproduces particle-
resolved model
predictions.
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Surrogate model can improve predictions of
climate-relevant aerosol properties ...
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Surrogate model can improve predictions of
climate-relevant aerosol properties ...
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Need a different approach for simulating
aerosol distributions
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Need a different approach for simulating
aerosol distributions

sectional modal particle-resolved
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Need a different approach for simulating
aerosol distributions
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Path forward: combine surrogate models with
quadrature-based aerosol scheme
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Quadrature-based aerosol model is a balance
between accuracy and computational efficiency

continuous pdf sectional quadrature-based

1
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Quadrature-based aerosol model is a balance
between accuracy and computational efficiency

continuous pdf sectional quadrature-based
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Quadrature points accurately approximate moments
of the underlying aerosol distribution
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Quadrature points accurately approximate moments

of the underlying aerosol distribution
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Quadrature points accurately approximate moments

of the underlying aerosol distribution
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Quadrature points accurately approximate moments
of the underlying aerosol distribution
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Quadrature points accurately approximate moments
of the underlying aerosol distribution
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How well do reduced aerosol schemes
represent particle properties? Not very well.

Can we do better? Yes!
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Conclusion: the bridge between scales is a missing

link in understanding aerosol effects
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Path forward: surrogate models to bridge
particle-scale and global-scale
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Path forward: surrogate models to bridge
particle-scale and global-scale
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Thank you!
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o

Pacific
57 Northwest

AAAAAAAAAAAAAAAAAA


mailto:laura.fierce@pnnl.gov
https://science.osti.gov/wdts/scgsr
https://science.osti.gov/wdts/scgsr

Reminder: join us at lunch today for to brainstorm

verification tests for aerosol models

Please provide your input in
this short survey!

E] 240

Questions? Ideas?

Contact AMBRS team!
laura.fierce@pnnl.gov

murphy.benjamin@epa.gov

nriemer@Illlinois.edu
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Inspiration: discrete random walk model

3.0

10uym - 50um - 100 um Problem: Need large ensembles to
---1  represent uncertainty in relevant
processes but tracking thousands
of Monte Carlo model of particle
#3201 evolution and dispersion is
sl expensivel
- | Solution: Quadrature-based model
25 of Respiratory Aerosol and
... Droplets (QuaRAD)

Vertical location z (m)

Streamwise location x (m)

Wel, Jianjian, and Yuguo Li. "Enhanced spread of expiratory droplets by turbulencein a
cough jet." Building and Environment 93 (2015): 86-96.
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Efficient quadrature-based?
representation

* Continuous respiratory aerosol size distribution
(top) from Morawska group? is represented by
efficient quadrature approximation (middle)

* Virion weights (bottom) computed from
quadrature points and measurements of pathogen
loading with respect to particle size for influenza
from Milton group?.

1. McGraw, R. (1997). Description of aerosol dynamics by the quadrature method of
moments. Aerosol Science and Technology, 27(2), 255-265.

2. Johnson, G. R., et al. "Modality of human expired aerosol size

distributions." Journal of Aerosol Science 42.12 (2011): 839-851.

3. Milton, D. K., et al. "Influenza virus aerosols in human exhaled breath: particle size,
culturability, and effect of surgical masks." PLoS pathogens 9.3 (2013): e1003205.
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Increasing number of quadrature points does
not improve accuracy.

" IBIPEES 6 quadrature points is
600 points h
% 1071 3 POINtS enoug
T
e :
2 102 3 quadrature points (1
2 per mode) is not.
10—3@
1 2 3 4 \?’%
distanace downwind of infectious person [m] |
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risk relative to risk

risk of initial infection

in well-mixed room

=
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H
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[
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N
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i

100? T uLh LFT]rTmI.,LI e

0.0 4.0
dlstance downwmd of
infectious person [m]
|7 4|

0.0 1.0 2.0 3.0 4.0

horizontal extent of near-field effect [m]

Risk of transmission
enhanced by orders of
magnitude near
infectious person

Horizontal extent of near-field
effect is highly variable, with
median value of ~2 m.

Sensitivity analysis revealed
variability in horizontal extent is
driven by variability in expiration
velocity.
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Framework for
evaluating layered
controls on airborne
transmission

virion concentration [m™3]
107 102

A
0
-1

B j
mask on
infectious

persononly [

increase

by 4 ACH

1 2 3 4

ventilation |

distance downwind of infectious person [m]

Fierce, L., Robey, A. J., & Hamilton, C. (2022). High efficacy of layered controls for reducing exposure to

airborne pathogens. Indoor air, 32(2), €12989.

[W] yinow wolj Juswade|dsip
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Framework for
evaluating layered
controls on airborne
transmission

Fierce, L., Robey, A. J., & Hamilton, C. (2022). High efficacy of layered controls for reducing exposure to

airborne pathogens. Indoor air, 32(2), €12989.

exposure relative to no controls
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Exposure reduced most effectively through

layered controls

N exposure relative to close converstation
o & ith ks and | tilati
@%P.é@ N with no masks and low ventilation
& & Pmedian  (90% Cl) o e ik :
g|—'| 038 (0.04,0.57) - N ——————
Ol = _ [
el e|—| 009 (0.03,0.37) — :
ol e HId
ofleg|—] 018 (0.02,035 +—NEEE—
i RalE: e I B
gl /=] 005 (0.01,0.19 HiElll—
AN T H—
e|=|001 (0.00.11) J—i
_C_'a = L |]—|
Q| cl—2| 000 (00,004 H
~N| T i

Fierce, L., Robey, A. J., & Hamilton, C. (2022). High efficacy of layered controls for reducing exposure to

airborne pathogens. Indoor air, 32(2), €12989.
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particle-resolved composition

per-particle

1

particle-level

1.5

2

BC mass [pg]l abs. enhancement

2.5

absorption
enhancement
by BCin
example
particles

0% 25% 50% 75% 100%  10* 102
composition E— -
of 30 example ‘ :
BC-containing L -
particles ‘ :
| | :.
| -
\ -
' '-.
l e -
— l | :.
| .
[ ] -
. - .
— A
?» FEPETE PP - Nd
A< Q07 OO ¥ (O
sosition NN
composition

0% 25% 50% 75% 100%

Fierce ot al particle-resolved composition

Nat. Comm. 2016

1

parti

2
-level
abs. enhancement

2.5
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=
o

0.75

distribution of aerosol components with
respect to per-particle BC mass [ug cm™]
) -
N €]
Q1 -

Fierce et al,,
Nat®Comm. 2016

particle-resolved

— — _— - — = = [re— —_— —

o change in per-particle BC mass

104 103 102
mass of BC contained in each particle (pg)
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Particle-resolved model reveals variability in
per-particle absorption enhancement

per-particle Eaps, |

1071 100 10! 102
per-particle Ryc,;

- 0.01-fg BC core
o 0.1-fg BC core %
o 1-fg BC core
10-fg BC core Pacific
6o © Northwest



Particle-resolved model reveals variability in
per-particle absorption enhancement

per-particle E;ps,

S

101 100 10! 102 0.0 0.2
per-particle Rpc,; BC mass dist.

- 0.01-fg BC core

o 0.1-fg BC core %
o 1-fg BC core
O 10-fg BC core Pacific

0 J Northwest



Particle-resolved model reveals variability in
per-particle absorption enhancement

2.0 2.0
Ly
= 1.8 1 o Ll
§ S
W I} ©
I Lafl 16
o >
e P
3 147 § 1.4
o ©
o
1.2 1 \\ 3 1.2 +
@)
o
1.0 ‘ LILA) | L UL | g LER L T U T | 1 I 1.0
1071 100 10* 102 0.0 0.2
per-particle Rpc,; BC mass dist.

- 0.01-fg BC core
o 0.1-fg BC core
o 1-fg BC core

o 10-fg BC core
71
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Particle-resolved model reveals variability in
per-particle absorption enhancement

72

per-particle E;ps,

O

1.4 -

1.2 -

1.0
10—

109

10!
per-particle Rpc,;

102 0.00 0.25
BC mass dist.

population-averaged Eps

0.01-fg BC core W default model: core-shell, uniform composition

0.1-fg BC core
1-fg BC core
10-fg BC core

I
o

=
(0]
]

-
(@)
]

!—I
S
1

=
N
]

n
o

B best model: account for deviation from core-shell, comp. diversity
B account for deviation from core-shell, but assume uniform comp.
O account for comp. diversity, but assume core-shell
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Path forward: quadrature-based aerosol scheme in
large-scale atmospheric models

Univariate quadrature scheme _ 807 7
* Frameworkto efficiently represent % 60 -
aerosol size distributions, but simplified gz 20
composition g
* Implementationcan be completed proces 2 % l ] l ].
by process, without replacing scheme all 0 e L
at once dry diameter [nm]

Multivariate quadrature scheme

* Frameworkto efficiently represent
evolution of aerosol size-composition
distributions

* Implementationin large-scale models 1000
would require complete overhaul of

P |
0*% dry diameter [nm] %
aerosol scheme %
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Accurate CCN spectra from quadrature

s ]00
L
(o
9 10
53 0 1000 . :
5, %. 102 10 100 Quadrature approximation of
Q/\ f/— dry didme"'er [nm] ° ° e,
particle size-composition
distribution are constructed from
multivariate moments
10° < |
3
»oo%?nm"
= ©
03 % 102 10 100 1000
Q’&A 91 dry diameter [nm]
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Accurate CCN spectra from quadrature

istribution

benchmal‘k d

Palt

10°
%
»oo /Qp 107
9,0 1000
’%/%. 102 10 100
%z dry diameter [nm]
0.6
= 0.4
(o))
10° 2
© "= 10!
o, < QP
- 100 1000 0
% '0’6 102 4o 0.01 0.1
CRcA dry diameter [nm]

| |

project quadrature from D, -k
space to s_ space

75
Fierce and McGraw, JGR 2017

1

10

critical supersaturation

Pacific
Northwest

NATIONAL LABORATORY



Accurate CCN spectra from quadrature

istribution

penchmark d
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Fierce and McGraw, JGR 2017

o 1 \

0

s . '

- £0.5 !

O c ! \

N o

T © o \

£ 0 2

2 0.01 0.1 1 10

critical supersaturation

!

continuous distribution from

moments with respect fo s_

~7

Pacific
Northwest

NATIONAL LABORATORY



Accurate CCN spectra from quadrature

normalized number density
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BC-containing particles evolve

rapidly in a polluted plume.

Fierce et al., JGR 2013
Fierce et al., ACP 2015

normalized

Two-dimensional
distribution shows

<
—

changes in size and
composition
influencing CCN
activation.

o
S
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—
|

hy; hygroscopicity parameter *
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number dist.

001 01 1 10
B

6:10 am

dry diameter [um] 1

A N | - | -

e

2acific
\Nlorthwest

AAAAAAAAAAAAAAAAAA



Fierce et al., JGR 2013
Fierce et al., ACP 2015

normalized
number dist.

.. 00101 1 10
critical supersat. T

1% 0.1%

[\

BC-containing particles evolve

rapidly in a polluted plume.

Two-dimensional
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BC-containing particles evolve
rapidly in a polluted plume.

Fierce et al., JGR 2013
Fierce et al., ACP 2015

normalized

number dist.
0.01 0.1 1 10

critical supersat. I

Two-dimensional

o
—

distribution shows
changes in size and

composition 0.01
influencing CCN
activation. 0.001f =

hygroscopicity parameter *

i 6:10 am
u e —

0.01
80 * Petters and Kreidenweis, ACP 2007

dry diameter [um]
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BC-containing particles evolve

rapidly in a polluted plume.

Fierce et al., JGR 2013
Fierce et al., ACP 2015

normalized

Two-dimensional

o
[N

distribution shows
changes in size and

composition 0.01
influencing CCN
activation. 0.001

hygroscopicity parameter *

1%
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BC-containing particles evolve

rapidly in a polluted plume.

Fierce et al., JGR 2013
Fierce et al., ACP 2015

normalized

Two-dimensional

o
[N

distribution shows
changes in size and

composition 0.01
influencing CCN
activation. 0.001
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BC-containing particles evolve
rapidly in a polluted plume.

Fierce et al., JGR 2013
Fierce et al., ACP 2015

normalized

Two-dimensional

o
[N

distribution shows
changes in size and

composition 0.01
influencing CCN
activation. 0.001
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BC-containing particles evolve
rapidly in a polluted plume.

Fierce et al., JGR 2013
Fierce et al., ACP 2015

normalized

Two-dimensional
distribution shows
changes in size and

o
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Fierce et al., JGR 2013
Fierce et al., ACP 2015

normalized
number dist.

.. 00101 1 10
critical supersat. A |

BC-containing particles evolve
rapidly in a polluted plume.
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Fierce et al., JGR 2013
Fierce et al., ACP 2015

normalized
number dist.

.. 00101 1 10
critical supersat. A |

BC-containing particles evolve

rapidly in a polluted plume.
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Parameterize hydrophobic to hygroscopic
conversion using timescale for internal mixing

mixing timescale
6 hours 1 day 1 week 1 month

Timescale for internal
mixing varies with

e

.
=

local conditions.

—
=
W

total number concentration [cm'S]

%]

1
=

]
(%]

10° 10 10
secondary aerosol growth rate [nm/h] Fierce et al., BAMS 2017
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Parameterize hydrophobic to hygroscopic
conversion using timescale for internal mixing

mixing timescale

6 hours 1 day 1 week 1 month

.
=

ot
=
W

faster aging by
ation of
aeroso

total number concentration [cm'S]

ot
=
(%]

]
ad

10 10" 10
secondary aerosol growth rate [nm/h]

[
=

Timescale for internal
mixing varies with
local conditions.

Fierce et al., BAMS 2017
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Parameterize hydrophobic to hygroscopic
conversion using timescale for internal mixing

mixing timescale
6 hours 1 day 1 week 1 month

Timescale for internal
mixing varies with

.
=

local conditions.

—
=
W

ter aging by
oagulati

total number concentration [cm'S]

ot
=
(%]

]
(%]

10° 10 10
secondary aerosol growth rate [nm/h] Fierce et al., BAMS 2017
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Parameterize hydrophobic to hygroscopic
conversion using timescale for internal mixing

mixing timescale

6 hours 1 dair 1 wleek 1 month

Beijing, China
Mexico City, Mexico
St. Louis, USA
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Box models studies for evaluating reduced
representation of size distributions

=== PartMC-MOSAIC
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Across scenarios, divergence controlled by time
integral over aging conditions

coagulation only gas condensation only

KL-divergence
o
D

ST 2B .

0.0 . | ~ 4 7

> 1073 1072 107! 10°

integrated number integrated condensation
concentration [cm~3h] growth rate [nm]

92 Fierce, et al. (in prep)
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Reduced model diverges from benchmark across
regimes, most quickly under polluted conditions

93
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A plug for DOE training programs!

Office of Science Graduate Student Research (SCGSR) Program:

* science.osti.gov/wdts/scgsr

* Next deadline

Graduate student internships and postdoctoral positions:
careers.pnnl.gov

Reach out if you’re interested: laura.fierce@pnnl.gov
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