From vapors to aerosol: Excess energy and ring breaking in oxidation mechanisms

Siddharth Iyer

Research Council of Finland

Autoxidation: be fast or be terminated

Rissanen et al. J. Am. Chem. Soc. 2014, 136, 15596-15606

- Unimolecular competes with bimolecular reactions.
- Low TS energy favors unimolecular, while higher TS energy favors bimolecular. Rule-of-thumb: unimolecular reactions should be >0.1 s⁻¹.

Tampere University

• <u>The faster autoxidation is, less suspectible it is to termination,</u> and more significant the VOC is as an aerosol source.

Note that not all bimolecular reactions lead to termination. Also, some termination products (ROOR) are condensable vapors

Previous discrepencies and recent breakthroughs

Case 1: α -pinene

α -pinene ozonolysis

- α-pinene + ozone is one of the most efficient sources of aerosol precursors
- <u>On the right:</u> Products with 8 oxygen atoms with 100 ms of a-pinene meeting ozone.
- Below: "Computer says no."

 Atmospheric pressure interface mass spec. A key instrument for measuring low-volatility condensable vapors

1) Molecular level mechanism of α -pinene ozonolysis

Initial steps of α -pinene ozonolysis

Tampere University

Previous discrepencies and recent breakthroughs

Case 2: Toluene

2) Molecular level mechanism of toluene

Molecular rearrangement of BPR

Multiple autoxidation pathways

Different xylenes

5 second xylene + OH residence time

Summary

- Accurate understanding of autoxidation mechanisms is key modelling aerosol yields of different VOCs.
- Excess energy and ring breaking are key to the autoxidation of α -pinene, toluene and many other aromatics.
- For aromatics, high ipso yield and fast molecular rearrangement rates translate to higher HOM and higher SOA mass yield.
- Can we accurately model SOA mass yields of other aromatics using only ipso yield (in literature) and molecular rearrangement rates (relatively trivial to compute)? We are trying to find out.