Salt particle hydration

Nanna Myllys

Department of Chemistry and INAR, University of Helsinki

What?

- NPF from condensable acid and base molecules is a ubiquitous phenomenon in the atmosphere
- Water can stabilize or destabilize cluster structures

➢ DIFFICULT

- affect non-linear effects on the cluster formation dynamics
- role of water in NPF is not well-understood

. Why?

Water molecules (*d*=0.0000000027 m) impact the radiation balance of Earth (*d*=12 700 000 m)

. Monomer hydration

- Base monomers mainly exist as a dry form in the atmosphere
- TMAO is a special case due to its zwitter ionic structure
- Base monomer hydration seems to increase as gas-phase basicity increases

TMAO > GUA > DMA > AMM

Particle hydration

- Sulfuric acid–base particles exist as hydrated in the atmosphere
- SA–AMM and SA–DMA are present more in their hydrated forms
- Only 0.1% of the SA–GUA particles exist as a dry form

T=273 K, [particle]=0.01 ppt, RH=100% 10⁵ 10⁵ SA-AMM SA-DMA C_{steady-state} (cm⁻³) 10⁰ 10⁵ 10⁵ SA-GUA SA-TMAO C_{steady-state} (cm⁻³) 10⁰

Myllys, N. et al. (2021) Phys. Chem. Chem. Phys.

• Particle hydration

- Sulfuric acid–base particles exist as hydrated in the atmosphere
- SA–AMM and SA–DMA are present more in their hydrated forms
- Only 0.1% of the SA–GUA particles exist as a dry form
- Particles seem to be more hydrated when #H-bonds increase

Myllys, N. et al. (2021) Phys. Chem. Chem. Phys.

- Depending on the size and composition of the cluster, water may stabilize (green) or destabilize (red) the cluster
- This is the reason for the non-linear effects of hydration on cluster formation dynamics

. Effect of RH in particle formation

- Water slightly increases SA–GUA NPF
 - *HF*≈1.9
- Water slightly decreases MSA–GUA NPF
 - *HF*≈0.8
- Water significantly increases NA– GUA NPF
 - *HF*≈10000
- Water may intensify or inhibit NPF

 $HF = \frac{J_{\text{humid}}}{J_{\text{dry}}}$

Myllys, N. (2023) Phys. Chem. Chem. Phys.

. Note: *HF* is condition dependent

	$T = 248$ K and [GUA] = 10^3 cm ⁻³				$T = 273$ K and [GUA] = 10^4 cm ⁻³				$T = 298$ K and [GUA] = 10^5 cm ⁻³			
$[Acid] \text{ cm}^{-3}$	$J_{ m dry}$	HF ₁₀	HF_{50}	HF ₁₀₀	$J_{ m dry}$	HF ₁₀	HF_{50}	HF ₁₀₀	$J_{ m dry}$	HF ₁₀	HF_{50}	HF ₁₀₀
[SA]												
10 ⁶	$6 imes 10^{-5}$	1.5	1.8	1.9	$7 imes 10^{-4}$	1.3	1.5	1.3	$4 imes 10^{-1}$	1.1	0.9	0.9
10 ⁷	$7 imes 10^{-4}$	1.2	1.5	1.6	$7 imes 10^{-1}$	1.2	1.4	1.5	$5 imes 10^1$	1.1	1	1
10 ⁸	$6 imes 10^{-1}$	1.2	1.4	1.5	$4 imes 10^1$	1.1	1.3	1.3	10^{3}	1	1.1	1.1
10 ⁹	$4 imes 10^1$	1.1	1.3	1.3	10^{3}	1	1.1	1.2	$2 imes 10^4$	1	1.1	1.1
10 ¹⁰	10^{3}	1	1.1	1.1	10^4	1	1.1	1.1	$2 imes 10^5$	1	1	1.1
[MSA]												
10 ⁶	$8 imes 10^{-5}$	1.4	1	0.8	$3 imes 10^{-4}$	1.2	1.1	1.1	10^{-4}	22	272	297
10 ⁷	$8 imes 10^{-4}$	1.3	1.3	1.2	$6 imes 10^{-1}$	1.2	1.1	1.1	$2 imes 10^{-1}$	20	164	174
10 ⁸	$7 imes 10^{-1}$	1.2	1.3	1.3	$5 imes 10^1$	1.1	1.1	1.1	$4 imes 10^1$	10	29	30
10 ⁹	$4 imes 10^1$	1.1	1.2	1.2	10^{3}	1	1.1	1.1	$9 imes 10^3$	1.5	1.8	1.9
10 ¹⁰	10^{3}	1	1.1	1.1	$2 imes 10^4$	1	1	1	$2 imes 10^5$	1	1	1
[NA]												
10 ⁶	$6 imes 10^{-10}$	1.2	219	8284	$4 imes 10^{-11}$	1.1	31	1910	$9 imes 10^{-12}$	1	6.6	239
10 ⁷	10^{-7}	1.2	207	7752	$7 imes 10^{-9}$	1.1	30	1790	$2 imes 10^{-9}$	1	6.3	224
10 ⁸	10^{-5}	1.2	205	7568	8×10^{-7}	1.1	29	1767	$2 imes 10^{-7}$	1	6.2	222
10^{9}	10^{-4}	1.2	204	6840	$8 imes 10^{-5}$	1.1	29	1764	$2 imes 10^{-5}$	1	6.2	221
10 ¹⁰	10^{-1}	1.2	197	3723	$8 imes 10^{-4}$	1.1	29	1760	$2 imes 10^{-4}$	1	6.2	221

Myllys, N. (2023) Phys. Chem. Chem. Phys.

. Conclusions

- Monomers mainly exist in the atmosphere as dry
 - Hydration depends on the gas-phase basicity
- Particles mainly exist in the atmosphere as hydrated
 - Hydration depends on the number of hydrogen binding sites
- Effect of RH in NPF varies many orders of magnitude depending on the system and conditions
 - This depends on the (de)stabilization effect on clusters
- Neglecting effect of hydration in NPF may introduce remarkable inaccuracies in large-scale models

> Computationally cheap but accurate molecular-level parametrization to compute HF is needed

Thanks for your attention!

Molecular Level Atmospheric Science group

nanna.myllys@helsinki.fi