Modeling the seed-dependent particle growth via multiphase reactions with the particle-resolved model PartMC-CAMP

Yicen Liu¹, Jeffrey H. Curtis¹, Matthew L. Dawson², Devon N. Higgins³, Murray V. Johnston³, Nicole Riemer¹

¹University of Illinois at Urbana-Champaign, Champaign, Illinois, USA ²National Center for Atmospheric Research, Boulder, Colorado, USA ³University of Delaware, Newark, Delaware, USA

International Aerosol Modeling Algorithms Conference December 7, 2023

Growth rates of particles depend on the seed

Read Online

http://pubs.acs.org/journal/aesccq

Cite This: ACS Earth Space Chem. 2022, 6, 2158-2166

Growth Rate Dependence of Secondary Organic Aerosol on Seed Particle Size, Composition, and Phase

Devon N. Higgins, Michael S. Taylor, Jr., Justin M. Krasnomowitz, and Murray V. Johnston*

• Faster growth on ammonium sulfate seeds due to condensed-phase reaction.

- What is the impact on size distributions and CCN activity?
- Two steps:
 Step 1: Develop mechanistic model
 Step 2: Perform population-level simulations

D. N. Higgins, M. S. Taylor Jr., J. M. Krasnomowitz, and M. V. Johnston, *ACS Earth and Space Chemistry*, 2022

Article

Growth rates of particles depend on the seed

Read Online

http://pubs.acs.org/journal/aesccq

Cite This: ACS Earth Space Chem. 2022, 6, 2158-2166

Growth Rate Dependence of Secondary Organic Aerosol on Seed Particle Size, Composition, and Phase

Devon N. Higgins, Michael S. Taylor, Jr., Justin M. Krasnomowitz, and Murray V. Johnston*

• Faster growth on ammonium sulfate seeds due to condensed-phase reaction.

- What is the impact on size distributions and CCN activity?
- Two steps:
 Step 1: Develop mechanistic model
 Step 2: Perform population-level simulations

D. N. Higgins, M. S. Taylor Jr., J. M. Krasnomowitz, and M. V. Johnston, *ACS Earth and Space Chemistry*, 2022

Article

Construct inorganic/organic multiphase system in model

• SOA seed

 $NVOC_g \xrightarrow[k_{evap}]{k_{evap}} NVOC_a$ $SVOC_g \xrightarrow[k_{evap}]{k_{evap}} SVOC_a$

Wet AS seed

 $NVOC_g \xleftarrow[k_{evap}]{k_{evap}} NVOC_a$ $SVOC_g \xleftarrow[k_{evap}]{k_{evap}} SVOC_a$ $SVOC_a \xleftarrow[k_{Arr}]{k_{Arr}} NVOC_a$

Our tools: integrated multiphase chemistry model (CAMP)

• JSON-based: allows for detailed description of any gas- and particle- phase chemical mechanism.

```
"reactions" : [
  "type" : "SIMPOL PHASE TRANSFER",
  "gas-phase species" : "SVOC",
                                                                             Configuration for SVOC partitioning to the organic seed
  "aerosol phase": "organic seed",
  "aerosol-phase species": "SVOC aero",
  "B" : [ 3.50e3, -2.13e1, 0.0, 0.0 ]
                                                                                                                                     Reminder:
 },
                                                                                                                                     SVOC_g \stackrel{k_{cond}}{\longleftrightarrow} SVOC_a
  "type" : "CONDENSED PHASE ARRHENIUS",
  "aerosol phase" : "inorganic seed",
  "units" : "mol m-3",
  "reactants" : {
   "SVOC aero": {}
  ł,
                                                                              Configuration for in-particle reaction within inorganic seed
  "products" : {
   "NVOC aero" : {}
                                                                                                                                     Reminder:
  "A" : 3.65e-6,
                                                                                                                                      SVOC_a \xrightarrow{k_{Arr}} NVOC_a
  "B" : 1e-10,
  "C" : 1426.6
                                                                                                     M. L. Dawson, et al., Geosci. Model Dev., 15, 3663-3689, 2022
```

...

Our tools: Integrated multiphase chemistry model (CAMP)

• JSON-based: allow for detailed description of any gas- and particle- phase chemical mechanism.

Our tools: Particle-resolved model (PartMC & PyPartMC)

- Each particle is uniquely represented as an *A*-dimensional vector with mass composition components $\{\mu_1^i, \mu_2^i, \dots, \mu_A^i\}$.
- Allows for composition-dependent growth rates.

How can the model be calibrated to translate GF into condensed-phase reaction constant ?

- Wet AS seeds GF ≈ 3
- SOA seeds $GF \approx 1$

D. N. Higgins, M. S. Taylor Jr., J. M. Krasnomowitz, and M. V. Johnston, ACS Earth and Space Chemistry, 2022

• First, we need to understand the meaning of "growth factor"

Growth factor GF:

Fit parameter that tells us the factor by which we would need to increase the gas phase concentration to obtain the same growth **without having the condensed-phase reaction occurring**.

• Second, we need to design cases to mimic the experiment.

Cases	Seed	NVOC _g (t=0) (ppb)	SVOC _g (t=0) (ppb)	Gas/particle Partitioning	Condensed-phase Reaction
base	AS	0.04	0.132		×
base3x	AS	0.12	0.132		×
enhc	AS	0.04	0.132		

- "base" GF = 1
- "base3x" GF = 3
- "enhc" what an actual wet AS seed growth should look like

• Second, we need to design cases to mimic the experiment.

Cases	Seed	NVOC _g (t=0) (ppb)	SVOC _g (t=0) (ppb)	Gas/particle Partitioning	Condensed-phase Reaction
base	AS	0.04	0.132		×
base3x	AS	0.12	0.132		×
enhc	AS	0.04	0.132		~

• "base" – GF = 1

- "base3x" GF = 3
- "enhc" what an actual wet AS seed growth should look like

• Second, we need to design cases to mimic the experiment.

Cases	Seed	NVOC _g (t=0) (ppb)	SVOC _g (t=0) (ppb)	Gas/particle Partitioning	Condensed-phase Reaction
base	AS	0.04	0.132		×
base3x	AS	0.12	0.132		×
enhc	AS	0.04	0.132		

- "base" GF = 1
- "base3x" GF = 3
- "enhc" what an actual wet AS seed growth should look like

Cases	Seed	NVOC _g (t=0) (ppb)	SVOC _g (t=0) (ppb)	Gas/particle Partitioning	Condensed-phase Reaction
base	AS	0.04	0.132		×
base3x	AS	0.12	0.132		×
enhc	AS	0.04	0.132		

Optimized set:

$$A = 3.65 \times 10^{-6} \text{ s}^{-1}$$

 $B = 10^{-10}$

Growth rates of particles depend on the seed

Read Online

http://pubs.acs.org/journal/aesccq

Cite This: ACS Earth Space Chem. 2022, 6, 2158-2166

andary Organic Aarocal an

Growth Rate Dependence of Secondary Organic Aerosol on Seed Particle Size, Composition, and Phase

Devon N. Higgins, Michael S. Taylor, Jr., Justin M. Krasnomowitz, and Murray V. Johnston*

• Faster growth on ammonium sulfate seeds due to condensed-phase reaction.

 What is the impact on size distributions and CCN activity?

Two steps:
 Step 1: Develop mechanistic model
 Step 2: Perform population-level simulations

D. N. Higgins, M. S. Taylor Jr., J. M. Krasnomowitz, and M. V. Johnston, *ACS Earth and Space Chemistry*, 2022

Article

Case A: Unimodal distribution + competing for gases

- Two independent simulations: base vs. enhc.
- SOA and AS seeds **compete** for NVOC and SVOC.
- Enhanced SOA formation shifts the size distribution of AS towards larger sizes.

Case A: Unimodal distribution + competing for gases

- Two independent simulations : base vs. enhc.
- SOA and AS seeds compete for NVOC and SVOC.
- Increase in particle sizes affects CCN activity.

Case B: Bimodal distribution + AS in the small mode

Reduces the distance between the peaks by approximately 36%.

Case B: Bimodal distribution + AS in the small mode

Liu, Y. (University of Illinois)

Case C: Bimodal distribution + SOA in the small mode

Slight increase in both small mode and large mode by ~0.4%.

Case C: Bimodal distribution + SOA in the small mode

Liu, Y. (University of Illinois)

Concluding thoughts

- Created framework for seed-dependent particle growth using PartMC and CAMP.
- Impact on CCN concentration when ultrafine AS particles undergo enhanced growth.

yicenl2@illinois.edu

Code availability

PartMC: <u>https://github.com/compdyn/partmc</u> CAMP: <u>https://github.com/open-atmos/camp</u>

Funding

NSF AGS 19-16771 NSF AGS 19-41110

Liu, Y. (University of Illinois)

Email