Evaluating an Isoprene SOA Kinetic Model Using Laboratory and Field Measurements

Haofei Zhang¹ (<u>haofei.zhang@ucr.edu</u>) Chuanyang Shen¹, Xiaoyan Yang¹, Joel Thornton², John Shilling³, Chenyang Bi⁴, and Gabriel Isaacman-VanWertz⁵

¹Department of Chemistry, University of California, Riverside; ²Department of Atmospheric Sciences, University of Washington; ³Pacific Northwest National Laboratory; ⁴Aerodyne Research Inc.; ⁵Department of Civil and Environmental Engineering, Virginia Tech.

AGS-2037698

Motivation: Why isoprene

Motivation: Why isoprene

and the second s		isoprene	VOCs	Emission Inventory (Tg/yr)
			Isoprene	500 - 600
			Terpenes	100 - 150
			Other BVOCs	400 - 500
			Anthropogenic	100 -150

Motivation: Why isoprene

		isoprene	VOCs	Emission Inventory (Tg/yr)
			Isoprene	500 - 600
			Terpenes	100 - 150
			Other BVOCs	400 - 500
			Anthropogenic	100 -150

UCR

Guenther et al., Atmos. Chem. Phys., 2006, 6, 3181

Andrea et al., Atmos. Chem. Phys., 2015, 15, 2247

Motivation: Why still isoprene

Motivation: Why still isoprene

FABIEN PAULOT, JOHN D. CROUNSE, HENRIK G. KJAERGAARD, ANDREAS KÜRTEN, JASON M. ST. CLAIR, JOHN H. SEINFELD, AND PAUL O. WENNBERG Authors Info & Affiliations

SCIENCE • 7 Aug 2009 • Vol 325, Issue 5941 • pp. 730-733 • DOI: 10.1126/science.1172910

Reactive intermediates revealed in secondary organic aerosol formation from isoprene

Jason D. Surratt^a, Arthur W. H. Chan^a, Nathan C. Eddingsaas^a, ManNin Chan^b, Christine L. Loza^a, Alan J. Kwan^b, Scott P. Hersey^b, Richard C. Flagan^{a,b}, Paul O. Wennberg^{b,c}, and John H. Seinfeld^{a,b,1}

⁴Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125⁴Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125⁴Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125

Edited by Barbara J. Finlayson-Pitts, University of California, Irvine, Irvine, CA, and approved November 23, 2009 (received for review September 30, 2009)

Motivation: Why still isoprene

Particle Phase

UCR Surratt et al., *Proc. Natl. Acad. Sci.*, **2010**, 107, 6640; Lin et al., *Proc. Natl. Acad. Sci.*, **2013**, 110, 6718; Nguyen et al., *Phys. Chem. Chem. Phys.*, **2015**, 17, 17914

Liu et al., *Environ. Sci. Technol.*, **2016**, 50, 9872; Lee et al., *Proc. Natl. Acad. Sci.*, **2016**, 113, 1516; 4 Schwantes et al., *Atmos. Chem. Phys*, **2019**, 19, 7255

Surratt et al., Proc. Natl. Acad. Sci., 2010, 107, 6640; Lin UCR et al., *Proc. Natl. Acad. Sci.*, **2013**, 110, 6718; Nguyen et al., Phys. Chem. Chem. Phys., 2015, 17, 17914

Liu et al., Environ. Sci. Technol., 2016, 50, 9872; Lee et al., Proc. Natl. Acad. Sci., 2016, 113, 1516; 4 Schwantes et al., Atmos. Chem. Phys, 2019, 19, 7255

UCR Surratt et al., *Proc. Natl. Acad. Sci.*, **2010**, 107, 6640; Lin et al., *Proc. Natl. Acad. Sci.*, **2013**, 110, 6718; Nguyen et al., *Phys. Chem. Chem. Phys.*, **2015**, 17, 17914

Liu et al., *Environ. Sci. Technol.*, **2016**, 50, 9872; Lee et al., *Proc. Natl. Acad. Sci.*, **2016**, 113, 1516; 4 Schwantes et al., *Atmos. Chem. Phys*, **2019**, 19, 7255

Isoprene SOA Formation Modeling

- Highly simplified;
- Parameterization based on chamber-derived SOA;
- No molecular information.

Isoprene SOA Formation Modeling

• Highly simplified;

UCR

- Parameterization based on chamber-derived SOA;
- No molecular information.

- Too large to implement;
- The isomeric-level details are sometimes unnecessary

Thornton et al., ACS Earth Space Chem., 2020, 4, 1161

 Condensed gas-phase mechanism on top of SAPRC07 (+ 39 species and 118 reactions);

- Condensed gas-phase mechanism on top of SAPRC07 (+ 39 species and 118 reactions);
- Based on the Caltech/MCM/FZJ mechanisms;

Shen et al., *in prep*.

UCR

Wennberg et al., *Chem. Rev.*, **2018**, 118, 3337; Vereecken et al., *Phys. Chem. Chem. Phys.*, **2021**, 23, 5496

- Condensed gas-phase mechanism on top of SAPRC07 (+ 39 species and 118 reactions);
- Based on the Caltech/MCM/FZJ mechanisms;
- Epoxides undergo reactive uptake (in the presence of aqueous/acidic sulfate);

UCR

Wennberg et al., *Chem. Rev.*, **2018**, 118, 3337; Vereecken et al., *Phys. Chem. Chem. Phys.*, **2021**, 23, 5496

- Condensed gas-phase mechanism on top of SAPRC07 (+ 39 species and 118 reactions);
- Based on the Caltech/MCM/FZJ mechanisms;
- Epoxides undergo reactive uptake (in the presence of aqueous/acidic sulfate);
- Low-volatility products undergo absorptive gas-particle partitioning;

- Condensed gas-phase mechanism on top of SAPRC07 (+ 39 species and 118 reactions);
- Based on the Caltech/MCM/FZJ mechanisms;
- Epoxides undergo reactive uptake (in the presence of aqueous/acidic sulfate);
- Low-volatility products undergo absorptive gas-particle partitioning;
- Particle-phase photolysis (for hydroperoxides) and hydrolysis (for organic nitrates);

Shen et al., in prep. Data from: Zhang et al., Atmos. Environ., 2011, 45, 4507; Environ. Chem., 2013, 10, 194

Shen et al., *in prep.* Data from: Zhang et al., *Atmos. Environ.*, **2011**, 45, 4507; *Environ. Chem.*, **2013**, 10, 194

Shen et al., *in prep.* Data from: Zhang et al., *Atmos. Environ.*, **2011**, 45, 4507; *Environ. Chem.*, **2013**, 10, 194; Kroll et al., *Environ. Sci. Technol.*, **2006**, 40, 1869; Thornton et al., *ACS Earth Space Chem.*, **2020**, 4, 1161; Schwantes et al., *Atmos. Chem. Phys.*, **2019**, 19, 7255.

UCR Shen et al., *in prep.* Data from: Zhang et al., *Atmos. Environ.*, **2011**, 45, 4507; *Environ. Chem.*, **2013**, 10, 194; Kroll et al., *Environ. Sci. Technol.*, **2006**, 40, 1869; Thornton et al., *ACS Earth Space Chem.*, **2020**, 4, 1161; Schwantes et al., *Atmos. Chem. Phys.*, **2019**, 19, 7255.

SOA

Shen et al., *in prep.* Data from: Kroll et al., *Environ. Sci. Technol.*, **2006**, 40, 1869; Thornton et al., *ACS Earth Space Chem.*, **2020**, 4, 1161; Schwantes et al., *Atmos. Chem. Phys.*, **2019**, 19, 7255.

SOA

Shen et al., *in prep.* Data from: Kroll et al., *Environ. Sci. Technol.*, **2006**, 40, 1869; Thornton et al., *ACS Earth Space Chem.*, **2020**, 4, 1161; Schwantes et al., *Atmos. Chem. Phys.*, **2019**, 19, 7255.

Shen et al., *in prep.* Data from: Kroll et al., *Environ. Sci. Technol.*, **2006**, 40, 1869; Thornton et al., *ACS Earth Space Chem.*, **2020**, 4, 1161; Schwantes et al., *Atmos. Chem. Phys.*, **2019**, 19, 7255.

Tzompa-Sosa and Fischer, J. Geophys. Res., 2020, 126, JD031935

Measurement constraints

Other considerations

- Dry and wet depositions (Nguyen et al., Proc. Natl. Acad. Sci., 2015, 112, E392; Bi and Isaacman-Vanwertz, Environ. Sci.: Atmos. 2022, 2, 1526);
- <u>Dilution</u> (*Kaiser et al., Atmos. Chem. Phys. 2016, 16, 9349*);
- <u>Aqueous-phase uptake</u> (Isaacman-Vanwertz et al., Environ. Sci. Technol., 2016, 50, 9952; Vasquez et al., Proc. Natl. Acad. Sci., 2020, 117, 33011);
- <u>Aerosol phase state</u> (*Shiraiwa et al., Nature Comm., 2017, 8, 15002;* Schmedding et al., Atmos. Chem. Phys., 2020, 20, 8201);

Gas-phase comparisons

SOA comparisons

Shen et al., *in prep.* Data from: Zhang et al., *Proc. Natl. Acad. Sci.*, **2018**, 115, 2038; Lee et al., *Proc. Natl. Acad. Sci.*, **2016**, 113, 1516

SOA comparisons

UCR

Shen et al., *in prep.* Data from: Zhang et al., *Proc. Natl. Acad. Sci.*, **2018**, 115, 2038; Lee et al., *Proc. Natl. Acad. Sci.*, **2016**, 113, 1516

SOA comparisons

Shen et al., *in prep.* Data from: Zhang et al., *Proc. Natl. Acad. Sci.*, **2018**, 115, 2038

SOA comparisons

UCR

Shen et al., in prep. Data from: Zhang et al., Proc. Natl. Acad. Sci., 2018, 115, 2038

Summary

- A new condensed isoprene mechanism. Consistency with chamber experiments. Can be applied in large-scale regional models.
- The low-volatility pathway constitute a large fraction (~57%) in the field isoprene-SOA formation.
- Future study on specific conditions (e.g. the high-NOx condition) should be done fully understand the isoprene oxidation and SOA formation.

SRH vs. RH

C5-LV vs. C5-NLV

LV vs. Reactive uptake

