

Investigating Anthropogenic Emission Mitigation Effects on Biogenic SOA Formation using Simplified and GENOA-Generated Mechanisms in 3-D Modeling

Zhizhao Wang^{1,2,3}, Florian Couvidat², Karine Sartelet¹

- ¹ CEREA, École des Ponts ParisTech, EDF R&D, IPSL, France
- ² INERIS, Institut National de l'Environnement Industriel et des Risques, France
- ³ Now at University of California, Riverside, and National Center for Atmospheric Research, USA

1. Background

Background

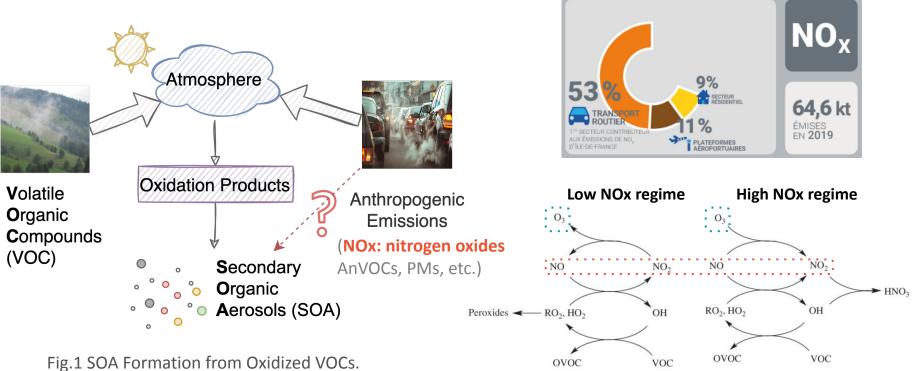


Fig.3 How NOx affects Ozone chemistry. (Source: Air pollution, 2019)

Fig.2 NOx emission at Ile-de-France in 2019. (Source: Airparif)

VOC Chemistry

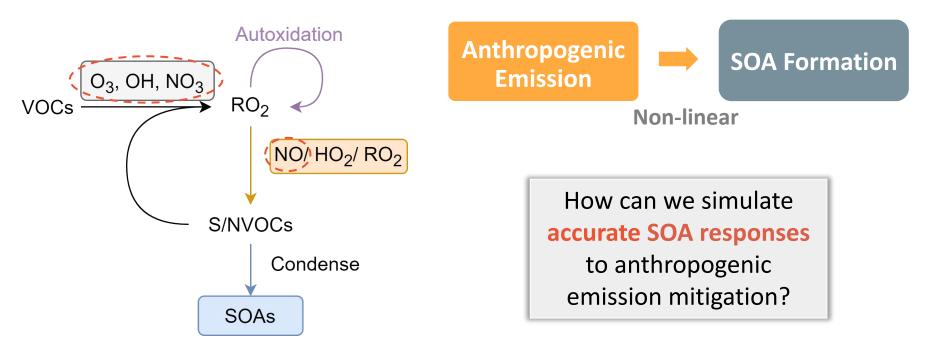


Fig.4 VOC degradation related to SOA formation. **S/NVOCs**: semi-/non- volatile organic compounds

SOA Formation Modeling

Bottom-up Approach

Add and evaluate **model species** and **lumped mechanism** for representative SOA precursors.

VOCs + Oxidants $\rightarrow a_1 P_1 + ... + a_n P_n$

Where a is SOA yield, P is model species: volatility bin or surrogate product.

Highly simplified VOC chemistry

Top-down Approach


Develop **protocols** to generate **detailed** VOC degradation schemes from targeted SOA precursors.

Multi-generation reactions & organic species

Overwhelming computational cost

Mechanism Reduction is Required

^{2. Methods} **ENOA GEN**erator of reduced Organic Aerosol mechanisms

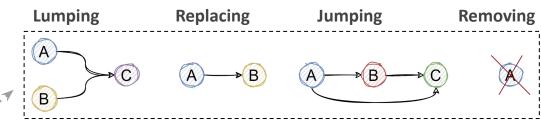


Fig.6 Reduction Strategies - Protocols to reduce species/ reactions

Semi-Explicit SOA Mechanisms

- > Preserve complexity of VOC chemistry on SOA formation
- Condensable species (with structures)
- Reaction pathways forming SOAs
- > Manageable Computational Costs
 - Application to regional-scale air quality modeling

Fig.5 Schematic diagram of GENOA. (Wang et al., 2022)

2 Methods **ENOA** GENerator of reduced Organic Aerosol mechanisms

GENOA v2.0 (Wang et al. 2023):

Parallel Reduction on Mechanisms from Multiple SOA Precursors

Monoterpene (MT) SOA Formation

- \rightarrow Reference & starting point
 - α -pinene, β -pinene, and limonene degradation in
 - Master Chemical Mechanism (MCM v3.3.1) (Jenkin et al., 1997)
 - Peroxy Radical Autoxidation Mechanism (PRAM) (Roldin et al., 2019)
 - Highly Oxygenated organic Molecules (HOMs) Ο
- Result: Size < 8% of MCM+PRAM & error < 3% \rightarrow

Sesquiterpene (SQT) SOA Formation

- Reference & starting point \rightarrow
 - β -caryophyllene (BCARY) degradation in MCM v3.3.1 (Jenkin et al., 2012)
- Result: Size < 2% of MCM & error < 3% \rightarrow

GBM:

GFNOA

v2 0reduced

Biogenic

Mechanism

3-D Simulations: Top-down v.s. Bottom-up

himere + CSSH aerosol Chimere v2020

Chemistry-Transport Model

(Menut et al., 2021)

+

SSH-aerosol v1.3

Aerosol Box Model (Sartelet et al., 2020) SOA Mechanisms

Top-down: GBM - **G**ENOA v2.0-reduced **B**iogenic **M**echanism **Bottom-up: H²O** - **H**ydrophilic/Hydrophobic **O**rganic mechanism (Couvidat et al., 2012)

Performance in 3-D Modeling

- Comparison with Measurements (EBAS database)
- Comparison Between Simulations

Response to Emission Reduction

• 50% NOx (NO, NO, HONO) Reduction

GBM v.s. H²O: monoterpene (MT)

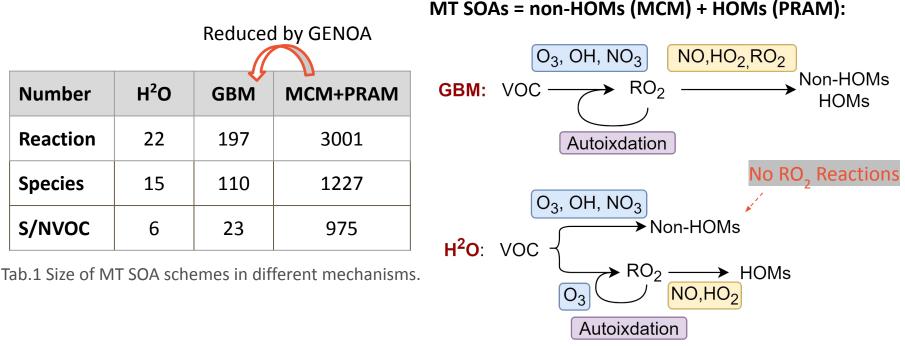
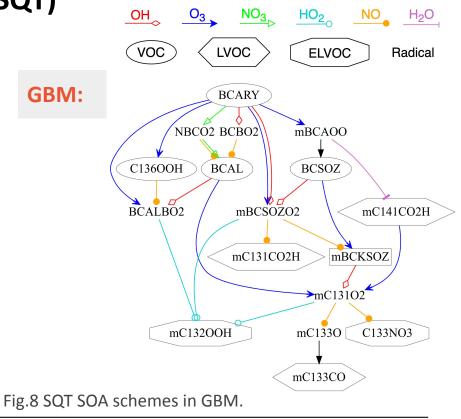
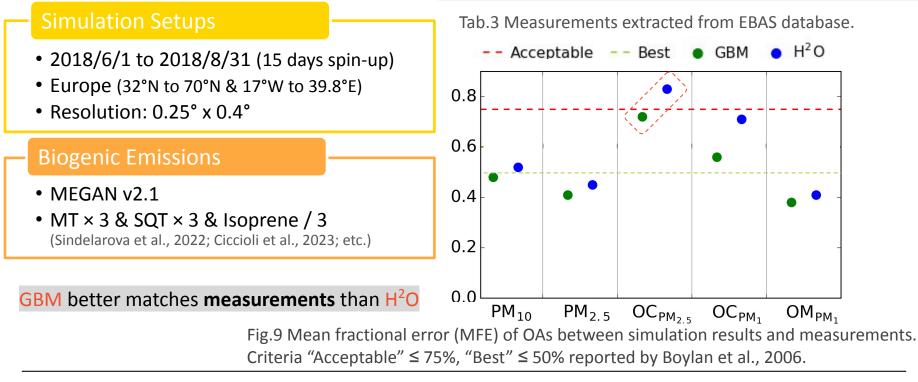



Fig.7 Comparison between GBM and H²O MT schemes.

2. Methods

GBM v.s. H²O: sesquiterpene (SQT) OH O₃ VOC $H^{2}O: SQT + OH/O_{3}/NO_{3} \rightarrow BiBmP + BiBIP$ **GBM: Reduced by GENOA** C136OOH H²O Number **GBM MCM** BCALBO2 Reaction 3 23 1625 Species 3 17 579 S/NVOC 2 6 365 mC132OOH Tab.2 Size of SQT SOA schemes in different mechanisms.

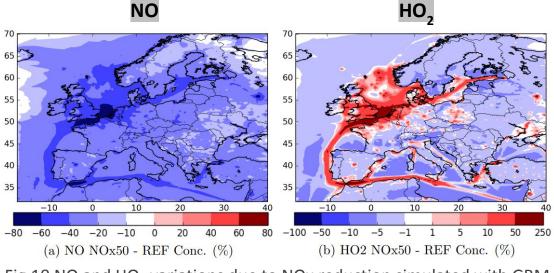

9

2023/12/07

Investigating Anthropogenic Emission Mitigation Effects on Biogenic SOA Formation

v.s. Measurement

	PM_{10}	$PM_{2.5}$	$OC_{PM_{2.5}}$	OC_{PM_1}	OM_{PM_1}
No. station	80	61	25	2	2
No. measurement b	92	89	16	17	25
Measurement mean	13.5	7.9	2.5	2.3	4.2


Response to NOx Reduction:

Inorganics

H2O & GBM: NOx $\downarrow =>$ NO/HO₂ $\downarrow =>$ RO₂ + HO₂ $\uparrow =>$ Peroxides (ROOH) \uparrow

Tab.4 Inorganic variations due to NOx reduction

Regimes	Low NOx	High NOx
NO	$\downarrow\downarrow$	$\downarrow\downarrow$
Ozone	\downarrow	↑
OH, NO ₃	↓	1
HO2	\downarrow	$\uparrow \uparrow$
NO/HO ₂	\downarrow	$\downarrow\downarrow$

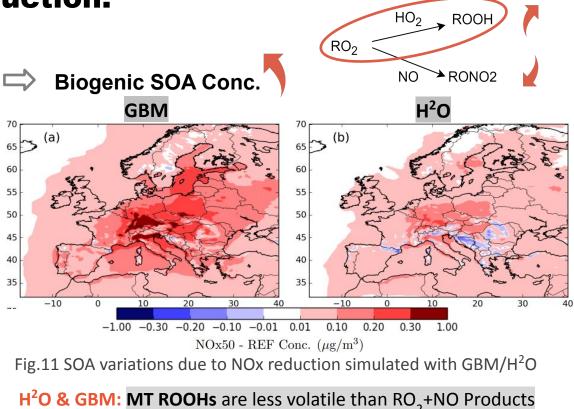
 RO_2

 HO_2

NO

ROOH

➤ RONO2


Fig.10 NO and HO₂ variations due to NOx reduction simulated with GBM

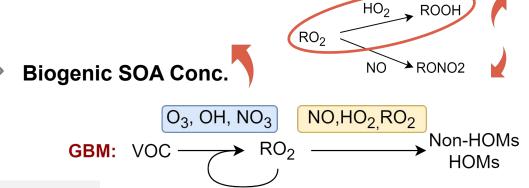
Response to NOx Reduction:

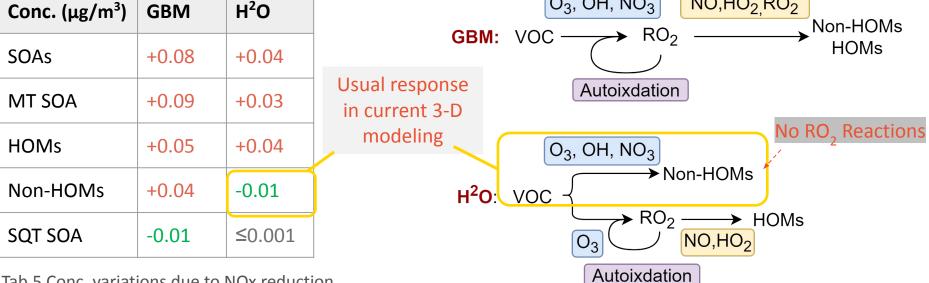
SOAs

Anthropogenic Emission

Conc. (µg/m ³)	GBM	H ² O
SOAs	+0.08	+0.04
MT SOA	+0.09	+0.03
HOMs	+0.05	+0.04
Non-HOMs	+0.04	-0.01
SQT SOA	-0.01	≤0.001

Tab.5 Conc. variations due to NOx reduction


12

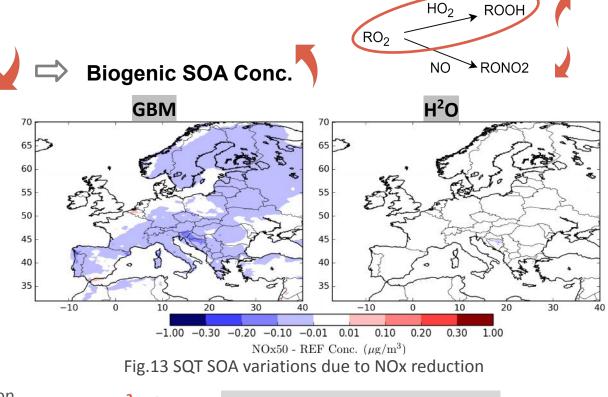

2023/12/07

Response to NOx Reduction:

Monoterpene (MT) SOAs

Anthropogenic Emission

Tab.5 Conc. variations due to NOx reduction


Fig.12 Comparison between GBM and H²O MT schemes.

Response to NOx Reduction:

Sesquiterpene (SQT) SOAs

Anthropogenic Emission

Conc. (µg/m³)	GBM	H ² O
SOAs	+0.08	+0.04
MT SOA	+0.09	+0.03
HOMs	+0.05	+0.04
Non-HOMs	+0.04	-0.01
SQT SOA	-0.01	≤0.001

Tab.5 Conc. variations due to NOx reduction

H²O & GBM: SQT SOAs are not sensitive to NOx

Conclusions

Mechanism Reduction

- **GBM** trained from MCM + PRAM using **GENOA v2**
 - Monoterpene and sesquiterpene SOA Formation

3-D Simulations with **Top-down (GBM)** and **Bottom-up (H²O)** SOA mechanisms

- GBM better matches **measurements** than H²O
- NOx \downarrow -> SOAs \uparrow w/ H²O & SOAs \uparrow \uparrow w/ GBM
 - **Monoterpene:** NOx $\downarrow \rightarrow$ NO/HO₂ $\downarrow \rightarrow$ RO₂ + HO₂ = ROOH $\uparrow \rightarrow$ SOAs \uparrow
 - Significant SOAs from **HOM** formation via RO₂ Autoxidation
 - **Sesquiterpene**: SOA not sensitive to NOx

Detailed SOA Mechanisms => Appropriate Response of SOAs to Emission Mitigation in 3-D Air Quality Modeling

What is going on now ...

Model development

- Preserve formation of other pollutants from VOC degradation
 - Ozone, NOx, ...
- Apply to Fully Explicit VOC Mechanisms (EPA STAR Agreement # 84000701)
 - GECKO-A (Aumont et al., 2005), MechGen (Carter et al., 2023), ...

Model application

- Generate condensed SOA mechanisms from other SOA precursors
 - Aromatics, isoprene, ...
 - Final goal: Build One For All Key SOA Precursors
- Investigate SOA formation variations on other scenarios
 - Shipping routine, Agriculture zone, ...

Thank you!

Check Out Our Poster $\mathcal{C}_{\mathcal{F}}$ "3-D Simulations of Toluene SOA

Formation at Regional and Street Scales" in Poster Session!

