Heterogeneous cloud and aerosol chemistry in the tropospheric NO_v cycle

Christopher D. Holmes¹, Timothy H. Bertram², Erin McDuffie³, Viral Shah⁴, Becky Alexander⁵

¹Florida State University, ²University of Wisconsin, ³Washington University in St. Louis, ⁴Harvard University, ⁵University of Washington

Geophysical Research Letters <u>https://doi.org/10.1029/2019GL081990</u>

N₂O₅ hydrolysis on aerosol surfaces: a large NO_x sink

Field: Platt et al., 1980, 1984; Heikes and Thompson, 1983; Brown et al., 2007 Models: Dentener & Crutzen, 1993; Tie et al., 2001; Evans and Jacob, 2005 *and many more*

 N_2O_5

Surface area
 Particle size
 Diffusion
 Reactive uptake γ

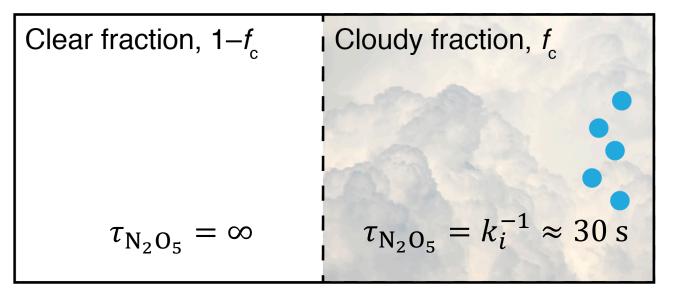
 K_i

(Schwartz, 1986; Sander, 1999; Jacob, 2000)

HNO₃, CINO₂

Aerosol: $\gamma \approx 10^{-4} - 0.02$ (complicated) Water & Ice: $\gamma \approx 0.02 - 0.03$ (well known) (Crowley et al., 2010; Ammann et al., 2013; Burkholder et al., 2015)

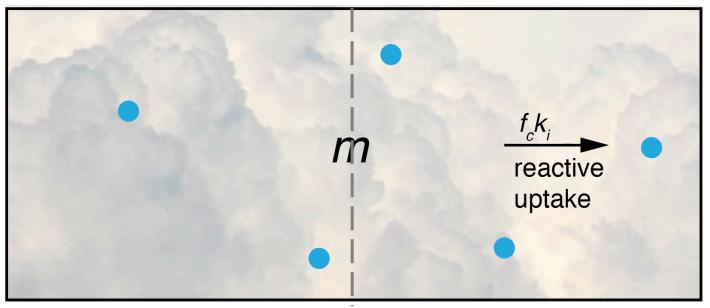
- 20-35% of global NO_x sink (Alexander et al., 2009; Bauer et al., 2004)
- Reduces global O₃ and OH by 1-4% (Macintyre and Evans, 2010)


What about clouds?

Clouds have 10⁶ times greater surface area than aerosols (Holmes et al., 2019) ...but cloud contact is sporadic, roughly daily (Lelieveld et al., 1989)

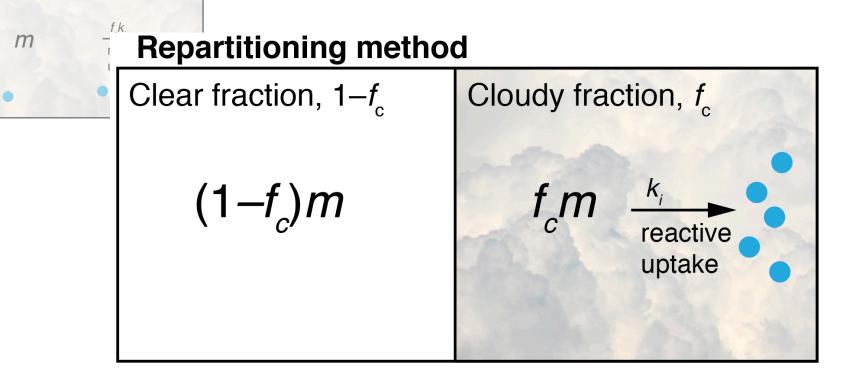
Past studies reported cloud uptake is very small, because
they assumed aerosol uptake was very fast (γ = 0.1)(Lelieveld and Crutzen, 1990;
Dentener & Crutzen, 1993; Jacob, 2000)

*that don't resolve clouds


Grid cells are *partly* cloudy, usually $f_c < 0.2$

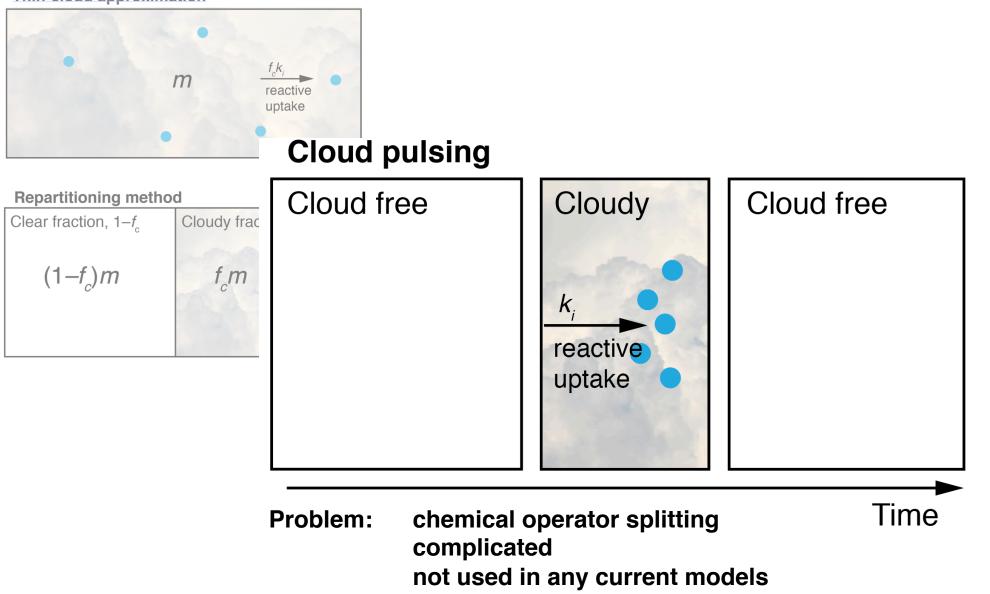
hydrolysis lifetime

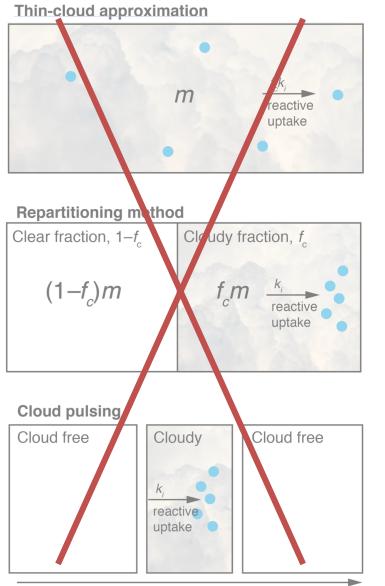
Existing methods


Thin-cloud approximation

Problem: uptake much too fast

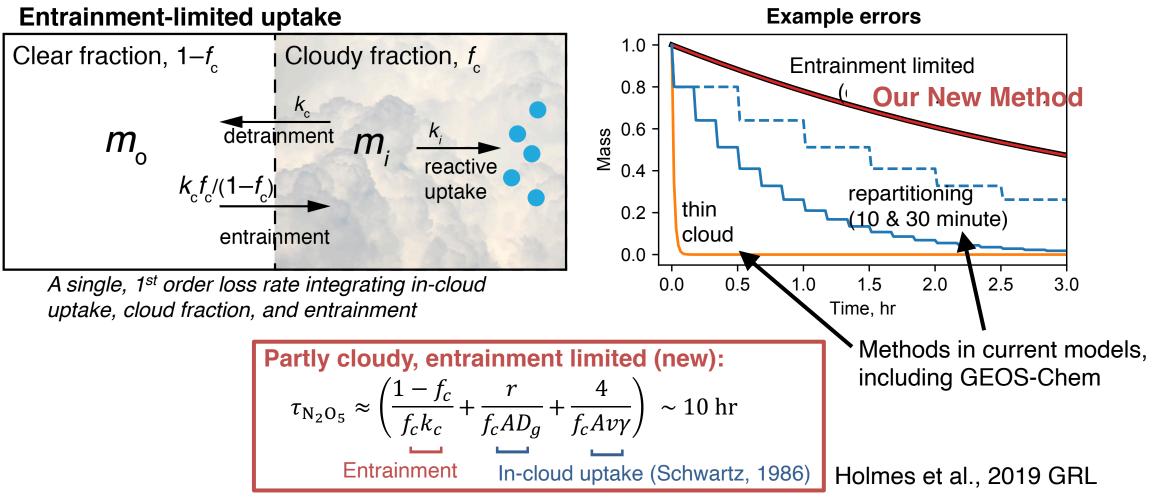
Existing methods


Thin-cloud approximation


Problem: sensitive to model time stepping (unphysical) converges to thin-cloud approximation

Existing methods

Thin-cloud approximation



Existing methods

Time

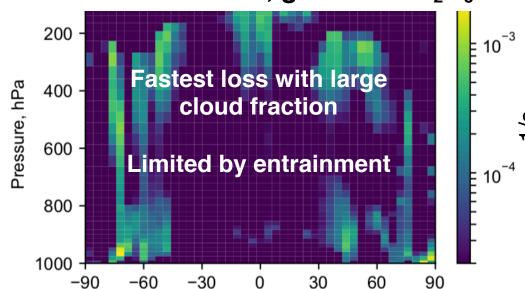
New method

Advantages: Physically realistic

Analogous to Schwartz (1986) mass transfer

Simple, fast

Applies to *any* irreversible reaction in clouds: N₂O₅, S(IV), HO₂, Hg(II), halogens, aerosol

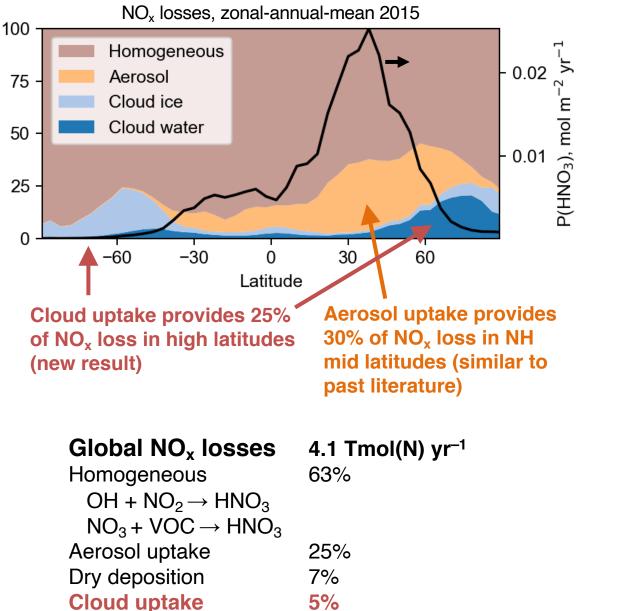

Experimental design with GEOS-Chem

Model configuration, v11-01

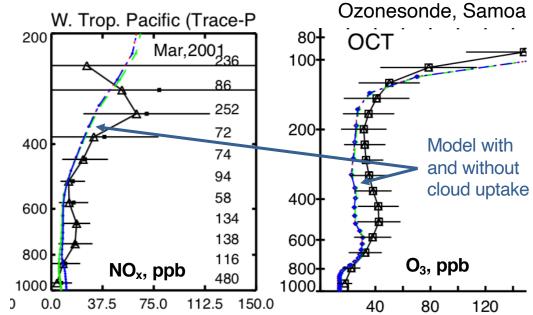
Tropospheric chemistry (Parrella et al., 2012) includes aerosol heterogeneous chemistry (Evans and Jacob, 2005) MERRA-2 meteorology for 2015 at 4° x 5° x 47L

Model improvements

Reassessed γ for a all NO_y species (JPL, IUPAC) Uptake on SO₄^{2–}–NO₃[–]–NH₄⁺ aerosol follows Bertram and Thornton (2009), Shah et al. (2018) Entrainment-limited cloud uptake



Entrainment-limited, grid-scale N₂O₅ loss


1/S

NO_x losses in improved model

P(HNO₃), %

Model changes are small relative to NO_x , & O_3 environmental variability

Reduces aerosol nitrate bias & improves Δ^{17} O-nitrate (Alexander et al., 2019 ACP)

Chemistry is clear: N₂O₅ hydrolysis should be included in models regardless of performance benefit

Holmes et al., 2019 GRL

Effects of clouds and aerosol on global tropospheric chemistry

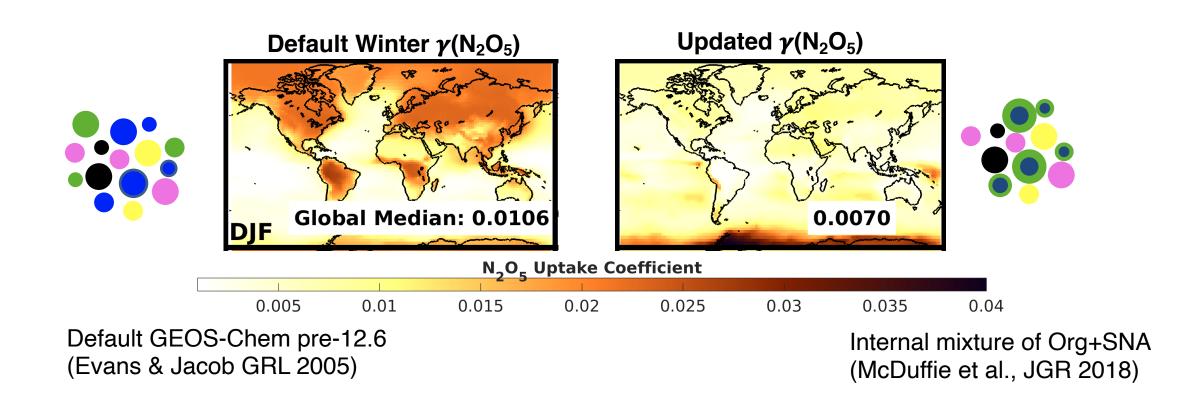
Simulation	Control	Cloud Off	Aerosol Off	Both Off
Aerosol reactions	Yes	Yes	No	No
Cloud reactions	Yes	No	Yes	No
NO _x	43 Gmol N	+0.7 %	+3.8 %	
O ₃	6.9 Tmol	+2.4 %	+2.5 %	
$ au_{\mathrm{CH}_4+\mathrm{OH}}$	8.7 yr	-1.9 %	-3.4 %	

Neglecting cloud uptake of N₂O₅ and NO₃

- Increases tropospheric NO_x by ~1%
- Increases tropospheric O₃ by 2.4%
- Decreases CH₄ lifetime by 2%

Cloud and aerosol heterogeneous reactions have similar magnitude effects on NO_x , O_3 , and OH

Neglecting both causes larger changes than the sum of their individual effects because clouds and aerosol compete for N_2O_5


Accounting for clouds makes tropospheric NO_x , O_3 , and OH much less sensitive to aerosol γ and surface area.

Holmes et al., 2019 GRL

Simulating N₂O₅ uptake on aerosol based on field studies

McDuffie et al. (2018) empirical parameterization of γ (N₂O₅)

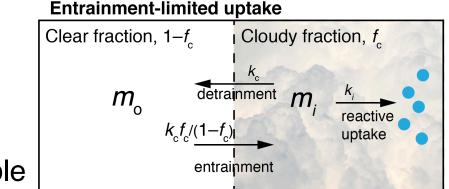
- Internal mixing of organic and sulfate-nitrate-ammonium aerosol
- Accounts for organic coating (Riemer et al, 2009)
 Surrounding an inorganic core (Bertram and Thornton, 2009)
- Better describes WINTER field observations than existing formulas
- Released in GEOS-Chem 12.6

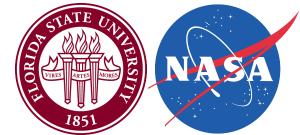
Combined changes in tropospheric composition

GEOS-Chem	12.1	+Holmes 2019	+McDuffie 2018	+Holmes 2019 +McDuffie 2018
Aerosol reactions	Yes	Updated γ	Updated y	Updated γ
			Organic coating	Organic coating
Cloud reactions	No	Yes	No	Yes
NO _x	41 Gmol N	- 0.9 %	+0.5 %	- 0.6 %
Aerosol nitrate	6.9 Gmol N	-1.2 %	- 0.5 %	-1.7 %
O ₃	8.0 Tmol	- 5.2 %	+0.7 %	- 4.9 %
$ au_{\mathrm{CH}_4+\mathrm{OH}}$	9.4 yr	- 6.1 % (10.0 yr)		- 5.6 % (9.9 yr)

Cloud and internal mixing updates partially offset each other

CH₄ lifetime (τ_{CH_4+OH}) now falls within observational constraints: 11.2 ± 1.3 yr (Prather et al,. 2013)


Implications for global atmospheric chemistry


Cloud uptake of NO_x plays a significant role in tropospheric chemistry:

- 20-25% of NO_x loss at high latitudes
- 5% of global NO_x loss.

This has been overlooked because early studies overestimated aerosol γ

After accounting for cloud effects, aerosols have less (half) influence on tropospheric chemistry

Organic coatings on inorganic aerosol decrease global mean aerosol nitrate and increase NO_x by 0.5% each

Entrainment-limited uptake is realistic, simple and suitable for other cloud reactions in regional and global chemistry models: SO₂ oxidation, Halogen recycling, HO₂ uptake, aerosol processing, aqueous Hg reduction, wet scavenging

Funding: NASA, FSU