

Comparison of multiple PM_{2.5} exposure products for estimating health benefits of emission controls

Xiaomeng Jin (xjin@ldeo.columbia.edu)

Lamont-Doherty Earth Observatory of Columbia University

International Aerosol Modeling Algorithms Conference 2019 December 6, 2019

Co-authors:

Arlene Fiore (LDEO), Kevin Civerolo (NYS DEC), Jianzhao Bi and Yang Liu (Emory University), Gabriele Curci (University of L'Aquila), Aaron van Donkelaar and Randall Martin (Dalhousie Univeristy), Alexei Lyapustin (NASA), Mohammad Al-Hamdan (NASA), Yuqiang Zhang (Duke University), Tabassum Insaf (NYS DOH), Marianthi Kioumourtzoglou and Mike He (Columbia School of Public Health), Patrick Kinney (Boston University)

Lamont-Doherty Earth Observatory COLUMBIA UNIVERSITY | EARTH INSTITUTE

Limited PM_{2.5} ground-based measurements for exposure assessment

Diao et al. (2019)

Linking satellite observations of AOD with ground-Level PM_{2.5} pollution

The relationship between **AOD** and PM_{2.5} depends on aerosol mass, species, vertical distribution, size, ambient environment.

Ground-based observations

Linking satellite observations of AOD with PM_{2.5}: Geophysical Approach

Linking satellite observations of AOD with PM_{2.5}: Statistical Approach

Yang Liu (Emory University)

Which long-term PM_{2.5} products are available for health studies over NYS ?

	Dataset	Spatial Resolution	Spatial Coverage	Temporal Resolution	In-situ	Remote Sensing	Atmospheric Model (CTM)	Ancillary Data	Refe
1	Global Geophysical Satellite-Based PM _{2.5} (Dalhousie_GL)	0.01 [°] x 0.01 [°] (~ 1 km x 1 km)	Global	Annual	GBD annual ground- based PM2.5	MODIS, MISR and SeaWIFS AOD	GEOS-Chem (v9-01-03)	X	Va Donke <i>al</i> 2
2	North America Geophysical Satellite- Based PM _{2.5} (Dalhousie_NA)	0.01 ° x 0.01 ° (~ 1 km x 1 km)	North America	Monthly	US EPA AQS	MODIS, MISR and SeaWIFS AOD	GEOS-Chem (v9-01-03)	X	Va Donke <i>al</i> 2
3	Machine Learning Satellite-Based PM _{2.5} (Emory)	1 km x 1 km	New York State	Daily	US EPA AQS	MAIAC AOD	X	Meteorology, land use	Bi <i>et a</i>
4	AQS and remote sensing merged PM _{2.5} (CDC WONDER)	10 km x 10 km	USA	Daily	US EPA AQS	MODIS AOD	X	X	Al-Ham <i>al</i> 2
5	Fused Air Quality Surface using Downscaling (FAQSD)	12 km x 12 km	USA	Daily	US EPA AQS	X	CMAQ (v4.7)	X	Berroc 2010,
6	CMAQ Simulation	12 km x 12 km	USA	Daily	X	X	CMAQ (v4.7)	X	Byun 20
7	Inverse Distance Weighed PM _{2.5} (IDW)	12 km x 12 km	New York State	Daily	US EPA AQS	X	X	X	US EP

How do these PM_{2.5} products differ?

• The annual population weighed average $PM_{2.5}$ over NYS vary by 6 μ g/m³ (44%), but the decreasing trends are consistent across all products.

Evaluation of PM_{2.5} products using independent ground-based observations

- Urban Area: NYC Community Air Quality Survey (NYCCAS) Program.
- Remote Area: St. Regis Mohawk Tribe (SRMT) Air **Quality Program**

Evaluation of PM_{2.5} products using independent ground-based observations

- Urban Area: NYC Community Air Quality Survey (NYCCAS) Program.
- Remote Area: St. Regis Mohawk Tribe (SRMT) Air **Quality Program**

Pearson	Correlation	Coefficient	(R)
---------	-------------	-------------	-----

	Dataset	NYC CAS		SRMT A (37 km)	SRM (130
		Spatial	Temporal	Tem	poral
	Geophysical (1km)	0.33	0.83	0.81	0.7
With Remote Sensing	Machine learning (1km)	0.62	0.94	0.89	0.7
	CDC WONDER (10 km)	0.31	0.82	0.86	0.7
	FAQSD (12 km)	0.53	0.93	0.74	0.5
Remote	CMAQ (12 km)	0.41	0.42	0.22	0.0
Sensing	AQS IDW (12 km)	0.58	0.92	0.87	0.6

Evaluation of PM_{2.5} products using independent ground-based observations

- Urban Area: NYC Community Air Quality Survey (NYCCAS) Program.
- Remote Area: St. Regis Mohawk Tribe (SRMT) Air **Quality Program**

- Inclusion of satellite remote sensing improves the estimate of $PM_{2.5}$ over remote area.
- Machine learning-based (Emory) product best captures the spatial and temporal variability of product performs best at the site **far** from AQS monitors (> 100 km).

Pearson Correlation Coefficient (I	R)
---	----

	Dataset	NYC CAS		SRMT A (37 km)	SRN (130
		Spatial	Temporal	Tem	poral
	Geophysical (1km)	0.33	0.83	0.81	0.7
With Remote Sensing	Machine learning (1km)	0.62	0.94	0.89	0.7
	CDC WONDER (10 km)	0.31	0.82	0.86	0.7
	FAQSD (12 km)	0.53	0.93	0.74	0.5
Remote	CMAQ (12 km)	0.41	0.42	0.22	0.0
Sensing	AQS IDW (12 km)	0.58	0.92	0.87	0.6

ground-level PM_{2.5} at the site closer to AQS monitors (< 40 km), but geophysical (Dalhousie_NA) Jin et al., 2019a, ERL

Excess mortality burden attributed to $PM_{2.5}$ exposure = **Baseline Mortality** × Attributable Fraction (PM_{2.5}) × Population

Excess mortality burden attributed to $PM_{2.5}$ exposure = **Baseline Mortality** \times **Attributable Fraction (PM_{2.5})** \times **Population**

Statistics (CDC WONDER)

Baseline Mortality: County-level mortality rate from the National Center for Health

Excess mortality burden attributed to $PM_{2.5}$ exposure = **Baseline Mortality × Attributable Fraction (PM_{2.5}) × Population**

- **Statistics (CDC WONDER)**
- Attributable fraction (1 1/RR):
 - **Based on an integrated exposure-response model (Burnett et al., 2014).**
 - Relative risk (RR) factors from the Global Burden of Disease Collaborative Network. Cause-specific RR factors for four causes of diseases: chronic obstructive
 - pulmonary diseases (COPD), ischemic heart disease (IHD), lung cancer (LC), and cerebrovascular and ischemic stroke (STROKE).

Baseline Mortality: County-level mortality rate from the National Center for Health

Excess mortality burden attributed to $PM_{2.5}$ exposure = **Baseline Mortality × Attributable Fraction (PM_{2.5}) × Population**

- **Statistics (CDC WONDER)**
- Attributable fraction (1 1/RR):
 - Relative risk (RR) factors from the Global Burden of Disease Collaborative Network.
 - **Based on an integrated exposure-response model (Burnett et al., 2014).**
 - Cause-specific RR factors for four causes of diseases: chronic obstructive pulmonary diseases (COPD), ischemic heart disease (IHD), lung cancer (LC), and cerebrovascular and ischemic stroke (STROKE).
- Population: County-level population from CDC WONDER, spatially distributed with Gridded Population of the World (GPW, v4) data from SEDAC.

Baseline Mortality: County-level mortality rate from the National Center for Health

PM_{2.5}-related mortality burden over NYS decreased by 67% from 2002 to 2012

Comparison of the geophysical vs. machine learning approaches to estimating PM_{2.5} from satellite AOD

		Gee Base
	Urban	
Accuracy	Remote	
Avoilobility	Spatial	
Availability	Temporal	
Docalution	Spatial	
nesuluiun	Temporal	

- Measurements uncertainty
- Invalid obs (clouds/snow)
- **PM_{2.5}-AOD Relationship**
 - Aerosol mass
 - Aerosol vertical distribution
 - Aerosol speciation
 - Modeled meteorology
 - Refractive index
 - Aerosol density
 - Size distribution
 - Hygroscopic growth factor

PM_{2.5}_CMAQ

= PM2.5_satellite

- Measurements uncertainty
- Invalid obs (clouds/snow)

- **PM_{2.5}-AOD Relationship**
 - Aerosol mass
 - Aerosol vertical distribution
 - Aerosol speciation
 - Modeled meteorology
 - Refractive index
 - Aerosol density
 - Size distribution
 - Hygroscopic growth factor

PM_{2.5}_CMAQ

= **PM**2.5_satellite

AODCMAQ

- Measurements uncertainty
- Invalid obs (clouds/snow)

- **PM_{2.5}-AOD Relationship**
 - Aerosol mass
 - Aerosol vertical distribution
 - Aerosol speciation
 - Modeled meteorology
 - Refractive index
 - Aerosol density
 - Size distribution
 - Hygroscopic growth factor

- PM_{2.5}_CMAQ

Co-located AERONET + AQS Sites

- Measurements uncertainty
- Invalid obs (clouds/snow)

- **PM_{2.5}-AOD Relationship**
 - Aerosol mass
 - Aerosol vertical distribution
 - Aerosol speciation
 - Modeled meteorology
 - Refractive index
 - Aerosol density
 - Size distribution
 - Hygroscopic growth factor

- PM_{2.5}_CMAQ

= **PM**2.5_satellite

- Measurements uncertainty
- Invalid obs (clouds/snow)

- **PM_{2.5}-AOD Relationship**
 - Aerosol mass
 - Aerosol vertical distribution
 - Aerosol speciation
 - Modeled meteorology
 - Refractive index
 - Aerosol density
 - Size distribution
 - Hygroscopic growth factor

- PM_{2.5}_CMAQ

Co-located AERONET + AQS Sites

- Measurements uncertainty
- Invalid obs (clouds/snow)

- **PM_{2.5}-AOD Relationship**
 - Aerosol mass
 - Aerosol vertical distribution
 - Aerosol speciation
 - Modeled meteorology
 - Refractive index
 - Aerosol density
 - Size distribution
 - Hygroscopic growth factor

- PM_{2.5}_CMAQ

- = **PM**_{2.5} satellite
 - Co-located AERONET + AQS Sites

EPA CSN + IMPROVE

Atmospheric Soundings Network

- Measurements uncertainty
- Invalid obs (clouds/snow)

- **PM_{2.5}-AOD Relationship**
 - Aerosol mass
 - Aerosol vertical distribution
 - Aerosol speciation
 - Modeled meteorology
 - Refractive index
 - Aerosol density
 - Size distribution
 - Hygroscopic growth factor

- PM_{2.5}_CMAQ

= **PM**_{2.5_}satellite

Co-located AERONET + AQS Sites

EPA CSN + IMPROVE

Atmospheric Soundings Network

Meta-analysis & Sensitivity Simulations in Model

than satellite AOD

Evaluating uncertainty in model PM_{2.5}/AOD using aircraft data (July 2011 over Baltimore-Washington, D.C.)

- We estimate 28% uncertainty in mortality burden due to choice of PM_{2.5} products, but such uncertainty is much smaller than the uncertainty of exposure-response functions (130%).
- Inclusion of satellite remote sensing improves the representativeness of $PM_{2.5}$ in remote area.
- Multi-platform in situ measurements are valuable for quantifying the uncertainties of satellite-derived PM_{2.5}.

emission controls over New York State, USA, Environ. Res. Lett., 14(8), 084023–14.

- Jin, X. et al. (2019a), Comparison of multiple PM_{2.5} exposure products for estimating health benefits of
- Jin, X., et al. (2019b), Assessing uncertainties of a geophysical approach to estimate surface fine particulate matter distributions from satellite-observed aerosol optical depth, Atmos. Chem. Phys., 19(1), 295–313.

Aerosol Optical Depth

Mie extinction efficiency (m²/m²) **Ratio of effective to geometrical** cross-section Effective radius (µm) "Optically" weighted mean radius [C. Heald and R. Martin, GC wiki]

