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Limited PM2.5 ground-based measurements for exposure assessment

Diao et al. (2019)

AQS Observations (2011)



Linking satellite observations of AOD with ground-Level PM2.5 pollution

Satellite-observed 
AOD: Sum of light 
extinction by all 

aerosols from bottom 
to top

PM2.5: Mass of small 
particles (diameter < 

2.5 µm) near the 
surface

Ground-based 
observations

?

The relationship between 
AOD and PM2.5 depends on 
aerosol mass, species, 
vertical distribution, size, 
hygroscopicity and 
ambient environment. 
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Linking satellite observations of AOD with PM2.5: Geophysical Approach



Linking satellite observations of AOD with PM2.5: Statistical Approach

Yang Liu (Emory University)

 

Statistical Model

Satellite AOD
Land Use

Census / traffic data

Meteorology
EPA air monitors

Predicted PM2.5 



Which long-term PM2.5 products are available for health studies over NYS ?

Dataset Spatial 
Resolution

Spatial 
Coverage

Temporal 
Resolution In-situ Remote 

Sensing
Atmospheric
Model (CTM)

Ancillary 
Data Reference

1
Global Geophysical 
Satellite-Based PM2.5 

(Dalhousie_GL)

0.01 ˚ x 0.01 ˚ 
(~ 1 km x 1 km) Global Annual

GBD annual 
ground-

based PM2.5

MODIS, 
MISR and 
SeaWIFS 

AOD

GEOS-Chem 
(v9-01-03) x

Van 
Donkelaar et 

al 2016

2

North America 
Geophysical Satellite-

Based PM2.5 
(Dalhousie_NA)

0.01 ˚ x 0.01 ˚ 
(~ 1 km x 1 km)

North 
America Monthly US EPA AQS

MODIS, 
MISR and 
SeaWIFS 

AOD

GEOS-Chem 
(v9-01-03) x

Van 
Donkelaar et 

al 2019

3
Machine Learning 

Satellite-Based PM2.5 
(Emory)

1 km x 1 km New York 
State Daily US EPA AQS MAIAC AOD x Meteorology, 

land use Bi et al. 2019

4
AQS and remote 

sensing merged PM2.5 
(CDC WONDER)

10 km x 10 km USA Daily US EPA AQS MODIS AOD x x Al-Hamdan et 
al 2012

5
Fused Air Quality 

Surface using 
Downscaling (FAQSD)

12 km x 12 km USA Daily US EPA AQS x CMAQ (v4.7) x Berrocal et al 
2010, 2011

6 CMAQ Simulation 12 km x 12 km USA Daily x x CMAQ (v4.7) x Byun et al 
2006

7 Inverse Distance 
Weighed PM2.5 (IDW) 12 km x 12 km New York 

State Daily US EPA AQS x x x US EPA 2018



How do these PM2.5 products differ?

2002

2012

µg/m3

NA Geophysical 
(Dalhousie_NA) 

Global Geophysical 
(Dalhousie_GL)

Machine Learning  
(Emory) FAQSD CMAQ AQS IDW CDC WONDER  

(2003 - 2011)

13.0

• The annual population weighed average PM2.5 over NYS vary by 6 µg/m3 (44%), but the 
decreasing trends are consistent across all products. 

Population 
Weighted 
average 
(µg/m3)

Population 
Weighted 
average 
(µg/m3)

Difference 
(µg/m3)

14.0 13.2 12.7 13.3 17.4 10.9

9.8 9.0 8.5 8.7 12.9 6.9 9.8

-4.2

-32 % -33% -34 %  -25 % -36%-30%
Relative 
Change

-4.2 -4.2 -4.6 -4.5 -4.0

Jin et al., 2019a, ERL



Evaluation of PM2.5 products using independent ground-based observations

• Urban Area: NYC Community Air Quality Survey 
(NYCCAS) Program. 

• Remote Area: St. Regis Mohawk Tribe (SRMT) Air 
Quality Program

NYCCAS Monitors
A (2002~2004)

B (2009 ~)
130 km

37 km

Jin et al., 2019a, ERL



Evaluation of PM2.5 products using independent ground-based observations

Pearson Correlation Coefficient (R)

Dataset
NYC CAS SRMT A 

(37 km)
SRMT B 
(130 km)

Spatial Temporal Temporal

With 
Remote 
Sensing

Geophysical 
(1km) 0.33 0.83 0.81 0.79

Machine 
learning 

(1km)
0.62 0.94 0.89 0.77

CDC WONDER 
(10 km) 0.31 0.82 0.86 0.75

Without 
Remote 
Sensing

FAQSD 
(12 km) 0.53 0.93 0.74 0.58

CMAQ 
(12 km) 0.41 0.42 0.22 0.04

AQS IDW 
(12 km) 0.58 0.92 0.87 0.60

• Urban Area: NYC Community Air Quality Survey 
(NYCCAS) Program. 

• Remote Area: St. Regis Mohawk Tribe (SRMT) Air 
Quality Program

NYCCAS Monitors
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B (2009 ~)
130 km

37 km
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Evaluation of PM2.5 products using independent ground-based observations

Pearson Correlation Coefficient (R)

Dataset
NYC CAS SRMT A 

(37 km)
SRMT B 
(130 km)

Spatial Temporal Temporal

With 
Remote 
Sensing

Geophysical 
(1km) 0.33 0.83 0.81 0.79

Machine 
learning 

(1km)
0.62 0.94 0.89 0.77

CDC WONDER 
(10 km) 0.31 0.82 0.86 0.75

Without 
Remote 
Sensing

FAQSD 
(12 km) 0.53 0.93 0.74 0.58

CMAQ 
(12 km) 0.41 0.42 0.22 0.04

AQS IDW 
(12 km) 0.58 0.92 0.87 0.60

• Inclusion of satellite remote sensing improves the estimate of PM2.5 over remote area. 

• Machine learning-based (Emory) product best captures the spatial and temporal variability of 

ground-level PM2.5 at the site closer to AQS monitors (< 40 km), but geophysical (Dalhousie_NA) 
product performs best at the site far from AQS monitors (> 100 km). 

• Urban Area: NYC Community Air Quality Survey 
(NYCCAS) Program. 

• Remote Area: St. Regis Mohawk Tribe (SRMT) Air 
Quality Program

NYCCAS Monitors
A (2002~2004)

B (2009 ~)
130 km

37 km

Jin et al., 2019a, ERL



Quantifying the PM2.5-related health benefits of emission reduction over NYS 

Excess mortality burden attributed to PM2.5 exposure  =  
Baseline Mortality ⨉ Attributable Fraction (PM2.5) ⨉ Population
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Quantifying the PM2.5-related health benefits of emission reduction over NYS 

Excess mortality burden attributed to PM2.5 exposure  =  
Baseline Mortality ⨉ Attributable Fraction (PM2.5) ⨉ Population

• Baseline Mortality: County-level mortality rate from the National Center for Health 
Statistics (CDC WONDER)

• Population: County-level population from CDC WONDER, spatially distributed with 
Gridded Population of the World (GPW, v4) data from SEDAC. 

• Attributable fraction (1 - 1/RR): 
• Relative risk (RR) factors from the Global Burden of Disease Collaborative Network. 
• Based on an integrated exposure-response model (Burnett et al., 2014).  
• Cause-specific RR factors for four causes of diseases: chronic obstructive 

pulmonary diseases (COPD), ischemic heart disease (IHD), lung cancer (LC), and 
cerebrovascular and ischemic stroke (STROKE).



PM2.5-related mortality burden over NYS decreased by 67% from 2002 to 2012

Uncertainty

28%

130%

Jin et al., 2019a, ERL



Comparison of the geophysical vs. machine learning approaches  
to estimating PM2.5 from satellite AOD

Geophysical Satellite-
Based PM2.5 (Dalhousie)

Machine Learning 
Satellite-Based PM2.5 

(Emory)

Accuracy
Urban 👍

Remote 👍

Availability
Spatial 👍

Temporal 👍 👍

Resolution
Spatial 👍

Temporal 👍



Key uncertainties of the geophysical approach at daily scale
PM2.5_CMAQ

AODCMAQ
AODsatellite x = PM2.5_satellite

• Measurements uncertainty 
• Invalid obs (clouds/snow)

PM2.5-AOD Relationship 
• Aerosol mass
• Aerosol vertical distribution 
• Aerosol speciation
• Modeled meteorology
• Refractive index
• Aerosol density
• Size distribution 
• Hygroscopic growth factor

Jin et al., 2019b, ACP
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Key uncertainties of the geophysical approach at daily scale
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• Measurements uncertainty 
• Invalid obs (clouds/snow)

PM2.5-AOD Relationship 
• Aerosol mass
• Aerosol vertical distribution 
• Aerosol speciation
• Modeled meteorology
• Refractive index
• Aerosol density
• Size distribution 
• Hygroscopic growth factor

Atmospheric Soundings Network

Meta-analysis &  Sensitivity 
Simulations in Model

Co-located AERONET + AQS Sites

EPA CSN + IMPROVE

Jin et al., 2019b, ACP



Model PM2.5/AOD contributes more uncertainty to satellite derived daily PM2.5 
than satellite AOD

Errors attributed to satellite AOD vs. modeled PM2.5/AOD

ΔPM2.5_AOD = (AODSat − AODAERONET) ×
PM2.5_Model

AODModel

ΔPM2.5_Rel = (
PM2.5_Model

AODModel
−

PM2.5_AQS

AODAERONET
) × AODSat

Co-located AERONET + AQS Sites
(within 10 km difference, 11 sites)

Jin et al., 2019b, ACP



Evaluating uncertainty in model PM2.5/AOD using aircraft data  
(July 2011 over Baltimore-Washington, D.C.)

Jin et al., 2019b, ACP
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• Swap in DISCOVER-AQ 
observed quantities 
into calculation of AOD 

• Replace modeled AOD 
with the new AOD and 
derive a new PM2.5 

• ∆PM2.5  = original PM2.5 
- new PM2.5
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Non-linear 
hygroscopic growth 

at high RH



Satellite-derived PM2.5 is sensitive to the parameterization of aerosol properties

Calculate model AOD 
offline using FlexAOD in 
which individual optical 
properties vary over ranges 
reported in the literature.

PM2.5_CMAQ 

AODCMAQ
PM2.5_satellite = AODsatellite x

Jin et al., 2019b, ACP



Take-aways
• We estimate 28% uncertainty in mortality burden due to choice of PM2.5 

products, but such uncertainty is much smaller than the uncertainty of 
exposure-response functions (130%). 


• Inclusion of satellite remote sensing improves the representativeness of 
PM2.5 in remote area. 


• Multi-platform in situ measurements are valuable for quantifying the 
uncertainties of satellite-derived PM2.5.

Jin, X. et al. (2019a), Comparison of multiple PM2.5 exposure products for estimating health benefits of 
emission controls over New York State, USA, Environ. Res. Lett., 14(8), 084023–14.

Jin, X., et al. (2019b), Assessing uncertainties of a geophysical approach to estimate surface fine particulate 
matter distributions from satellite-observed aerosol optical depth, Atmos. Chem. Phys., 19(1), 295–313.



Aerosol Optical Depth

GEOS-Chem AEROSOL OPTICS

MM
r
fQAOD

eff

RHext D
U

  
4
3

Mie extinction efficiency (m2/m2)
Ratio of  effective to geometrical 

cross-section

Effective radius (µm)
“Optically” weighted mean radius Species density (g/cm3)

Hygroscopic scaling factor

Column mass (g/m2)

Mass extinction 
coefficient (m2/g)

6 “optical” species with assumed size 
distributions, hygroscopic factors, 
densities, and refractive indices
Æ jv_spec.dat

[C. Heald and R. Martin, GC wiki]

α at λ = 550 nm


