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Latin hypercube sampling: 140 10-year-long simulations

Parameter Min Max Pinatubo Comments

Longitude [deg E] -180 180 120.35 Land mask will be handled later.

Latitude [deg N] -90 90 15.13
Normalized by cos(lat). Land mask will be 

handled later.

Julian day 1 365 166 (June 15)

Plume bottom [km] 2 40 22 Above topography.

Plume thickness [km] 1 10 4 plume top = plume bottom + plume thickness

SO2 amount [Tg] 0 100 18

H2O amount [Tg] 0 500 150

Eruption duration: 1 day.



Total sulfate burden (anomaly from control)

Time series of global 

atmospheric sulfur 

anomaly for all 140 

simulations.

Color: injection bottom 

altitude.

Demonstrates varied sulfur 

injections.

Roughly exponential 

decay.



Cumulative sulfate deposition (anomaly from control)

Time series of global sulfur 

deposition anomaly as a fraction of 

injected SO2.

Color: injection bottom altitude.

Bifurcation between tropospheric 

and stratospheric plumes.

Rather noisy for low-SO2 eruptions.



Fractional SO2 deposition (anomaly from control)

Global SO2 deposition 

anomaly as a fraction of total 

global sulfur deposition 

versus injection bottom 

altitude.

Color: injected SO2 mass.

For tropospheric plumes, 

much of the sulfur is washed 

out as SO2, not as much 

aerosol. 

Low-SO2 eruptions (darker 

points) noisier.



Climate effect: global mean surface temperature

Time series of global 

surface temperature 

anomaly for all 140 

simulations.

Color: mass of SO2

injected into the 

stratosphere.

Stratospheric sulfur 

strongly linked with global 

cooling. 



Deposition-parameter connections

• Scatter plot of Antarctic sulfate aerosol deposition anomaly across all parameter 

space dimensions.

• Stronger correlation: injected SO2, latitude.

• Weaker correlation: plume bottom, plume top.

• No clear correlation: longitude, Julian day, plume thickness.



Machine Learning (ML)

• Think of ModelE as a mapping from eruption parameters to polar sulfate 
deposition.

• An ML model (e.g. neural network) is also just a mapping from input to output.

• We train a ML model on ModelE runs that map eruption parameters to sulfate 
deposition, giving us a simplified but performant model that emulates ModelE.

• This is surrogate modeling: replacing a complex, computationally expensive model 
with an approximate (e.g. ML) one that lets us “simulate” eruptions much faster.

• For accuracy, need to train with many runs of the complex model first.
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Parameter estimation

• Trained neural network that maps 

parameters → Antarctic and 

Greenland simulated sulfate 

deposition.

• MCMC strategically samples 

neural net thousands of times 

using a sulfate deposition sample 

and uncertainty as input. 

• These samples can be plotted as 

distributions for each parameter.

• Plot represents a parameter 

estimation for a single simulation.

• True values marked.



• Combined latitude and longitude distributions to produce a heatmap.

• Find samples with highest likelihood (best matches to observed sulfate 

deposition).

• Plot true latitude 

and longitude 

parameters for 

this simulation.

Parameter estimation
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Conclusions and future work

• Simulated 140 volcanic eruptions with various parameters.

• Trained neural network on eruption parameters and polar sulfate deposition.

• Set up parameter estimation given some observed sulfate deposition.

• Parameter estimation performs best with high sulfate.

• Future extensions:

• Improve quantification of uncertainty in both the machine learning and ESM.

• Test with real ice core data from known eruptions (e.g. Tambora, Pinatubo).

• Identify regions in parameter space with stratified responses.

• Estimate parameters based on climate impact instead of sulfate deposition.

• Predict climate response from ice core sulfate.


