
Physics-Constrained Learning of
Aerosol Microphysics

Paula Harder

IAMA Conference 2023

Work done with: Duncan Watson-Parris,
Phillip Weiß, Philip Stier, Janis Keuper,
Dominik Strassel and Nico Gauger

Content

Motivation

Data & Model

Physics-Constraining

Offline results

Integration into ICON

Motivation

Motivation

Most climate models do not include aerosols in detail and if they are
included the computational costs do make long-term high-resolution runs
impossible

Idea: Replace original computationally expensive model with cheap ML
model = Emulation

The machine learning model is trained once offline and we benefit from
fast inference time online

Data & Model

Aerosol Microphysics Model M7

Aerosol microphysics model by
Vignati et al. 2004

Different aerosol types modeled
with size bins

M7: An efficient size-resolved aerosol microphyiscs module for
large-scale aerosol transport models, Vignatti et al. 2004

Data generation

Input/output data generated from runs of global aerosol-climate model ICON-HAM

Data covers 5 years, subsampled from locations, days, levels

Train-val-test split within time dimension, 4 years for training

~5M data points for training, ~0.5M for validation, ~0.5M for testing, each from
different days spread out through the year

Data

 Idea: Same input and output as original model, e.g. no spatial information

 Predict one time step for fixed time step length, here 450s

 35 input and 28 output variables

 Input/Output: 26 values for masses and numbers of different aerosol types

 Input only: Atmospheric variables, such as temperature, pressure, RH

 Output only: Water content of aerosols

Data challenges

Changes in variables are small to full variables we model changes and
evaluate on changes

Changes themselves are exponentially distributed

We tried both using logarithmically transformed and linearly transformed
variables

Log-transformation requires an additional network to classify whether a change
is positive or negative

Network architecture

Neural network with 2 hidden layers, 256 nodes per hidden layer, ReLU activation

Inputs:
Temperature, RH,
pressure,...
Aerosol masses
Aerosol number

Outputs:
Change in aerosol
masses
Change in aerosol
numbers
Water content

Physics-Constraining

Equality and inequality constraints

Let x be the NN’s input and y the output, h, g (linear) functions

Equality constraints:

h(x, y) = 0

Inequality constraints:

g(x, y) ⩾ 0

See also: Enforcing Analytic Constraints in Neural Networks Emulating Physical Systems, Beucler et al. & DC3: A learning method with hard constraints, Donti et al.

Soft vs. Hard Constraining

Let ỹ be the target

Soft constraining: The NN’s loss L is extended by additional terms

L(y,ỹ) := ||y-ỹ||² + λ Penalizer term

Hard constraining: Enforce constraints in additional network layer

NN

O
ut

pu
t

In
pu

t

C
on

st
ra

in
ts

La

ye
r

Soft Constraints

L(x,y,ỹ) := ||y-ỹ||² + λ||h(x,y)||² + μ||ReLU(-g(x,y))||²

Equality constraints: Minimizing ||h(x,y)|| encourages the NN to output y, such that
h(x,y) is close to 0

Inequality constraints: ReLU(z) = max(0, z), it sets the negative part to 0.
Minimizing ||ReLU(-g(x,y))|| encourages the NN to output y, such that g(x,y) is
positive

equality constraints inequality constraints

Hard Constraints

Equality constraints: Output partial set (y1, …, ym) and then calculate (ym+1, …, yn),
such that h(x,y)=0

This process is called completion

Inequality constraints: If g(x,y)<0 then set y such that g(x, y) = 0

Example: Constraint is that y≥0. If yi <0 then set yi=0

This process is called correction

NN

 O
ut

pu
t

y 1,…
,y

m

In
pu

t

C
om

pl
et

io
n

La
ye

r

O
ut

pu
t

y m
+

1,…
, y

n

NN

In
pu

t

C
or

re
ct

io
n

La
ye

r

O
ut

pu
t

Hard Constraints - Offline vs Online

Offline:

Online:

NN
In

pu
t

O
ut

pu
t

Training

NN

In
pu

t

C
or

re
ct

io
n

La
ye

r

O
ut

pu
t

NN

In
pu

t

C
or

re
ct

io
n

La
ye

r

O
ut

pu
t

NN

In
pu

t

C
or

re
ct

io
n

La
ye

r

O
ut

pu
t

Inference

Training Inference

Our Constraints

Mass conservation - Equality constraints
Let S= SO4,DU,OC,BC be the set of aerosol species. For every s∈S let Is be the indices
of our output y corresponding to value of that species. Mass conservation is given by

∑i∈Is yi=0

Soft constraining: Add loss term ||∑i∈Is yi ||²

Hard constraining: Choose j∈Is and set yj:=-∑i∈Is\{j} yi

Our Constraints

Mass positivity - Inequality constraints

All predicted masses have to be positive. For our input x (masses at time 0) and our
output y (change in mass), the constraint is

 yi+xi≥0

Soft constraining: Add loss term ||ReLU(-(yi+xi)||²

Hard constraining: Add correction layer yi=ReLU(yi+xi)-xi

Offline results

Results - Mass conservation

Hard-constrained NN satisfies mass conservation constraints
completely, soft constraints slightly decrease mass violation

Constraints only very slightly decrease accuracy

Difference between online vs offline constraints small

Model Base
NN

NN + mass
loss
(soft-constr.)

NN + offl
completion
(hard-constr.)

NN + onl
completion
(hard-constr.)

R² 0.87 0.86 0.85 0.84

Overall Mass
Violation

0.0015 0.00097 0 0

Results - Positivity

Hard-constrained NN satisfies positivity constraints completely, soft constraints
decrease negative fraction, but not negative magnitude

Hard constraints do not decrease accuracy, soft do decrease

Difference between online vs offline constraints small

Model NN Base NN +
Positivity Loss
(soft-constr.)

NN + offl.
Correction
(hard-constr.)

NN + onl.
Correction
(hard-constr.)

R² 0.87 0.68 0.87 0.86

Negative
Fraction

0.20 0.15 0 0

Negative Mean 0.0016 0.0016 0 0

Results - Plots

Results - Speed-ups

Runtimes for the prediction of one global time step:

Model M7 NN pure GPU NN CPU-GPU-CPU NN CPU

Time (s) 5.781 0.000517 0.0897 2.042

Speed-up 1 11181.8 64.4 2.80

Integration in ICON

Fortran-Keras-Bridge

Use Fortran-Keras-Bridge (FKB) to integrate NN into ICON

[1] https://github.com/scientific-computing/FKB

2. Convert to
Keras/Tenso
rflow h5 file
format

1.
Development
+ training in
PyTorch
Output:
Weights file

3. Using FKB
library to
convert h5
file to txt file

4. Replacing
original M7
function
call in ICON
with NN
version

Stability

Simulation easily unstable, if out-of-distribution samples appear - > important to include
samples from all year, all times of day, all areas, all vertical levels in training data

Things that helped to achieve stable runs
● Retrain with all data (including training,validation and testing) to achieve stable

runs
● Bigger NN
● Constraints such as soft mass and correction layers

Accuracy

Aerosol properties after a year of ICON-NN run vs reference run

Summary

Neural networks can accurately emulate aerosol microphysics model

We can incorporate physical constraints with hard constraining

A significant speed-up, especially on a GPU can be achieved

Achieve stable and accurate online runs with the help of constraints

Online speed-up very small, due to batch size of 1

Future work

Speed-up of the emulator when coupled

- Library that supports bigger batch size
- Pruning methods to make NN smaller
- Setup where a GPU can be utilized (GPU version of ICON)

Thanks for your attention!

Contact: paula.harder@mila.quebec

