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Motivation



Motivation

Most climate models do not include aerosols in detail and if they are 
included the computational costs do make long-term high-resolution runs 
impossible

Idea: Replace original computationally expensive model with cheap ML 
model = Emulation

The machine learning model is trained once offline and we benefit from 
fast inference time online



Data & Model



Aerosol Microphysics Model M7

Aerosol microphysics model by 
Vignati et al. 2004

Different aerosol types modeled 
with size bins

M7: An efficient size-resolved aerosol microphyiscs module for 
large-scale aerosol transport models, Vignatti et al. 2004



Data generation

Input/output data generated from runs of global aerosol-climate model ICON-HAM 

Data covers 5 years, subsampled from locations, days, levels

Train-val-test split within time dimension, 4 years for training

~5M data points for training, ~0.5M for validation, ~0.5M for testing, each from 
different days spread out through the year



Data 

   Idea: Same input and output as original model, e.g. no spatial information

   Predict one time step for fixed time step length, here 450s

   35 input and 28 output variables

   Input/Output: 26 values for masses and numbers of different aerosol types

   Input only: Atmospheric variables, such as temperature, pressure, RH

   Output only: Water content of aerosols



Data challenges

Changes in variables are small to full variables     we model changes and 
evaluate on changes

Changes themselves are exponentially distributed

We tried both using logarithmically transformed and linearly transformed 
variables

Log-transformation requires an additional network to classify whether a change 
is positive or negative



Network architecture

Neural network with 2 hidden layers, 256 nodes per hidden layer, ReLU activation

Inputs:
Temperature, RH, 
pressure,...
Aerosol masses
Aerosol number

Outputs:
Change in aerosol 
masses
Change in aerosol 
numbers
Water content



Physics-Constraining



Equality and inequality constraints

Let x be the NN’s input and y the output, h, g (linear) functions

Equality constraints: 

h(x, y) = 0

Inequality constraints:

g(x, y) ⩾ 0

See also: Enforcing Analytic Constraints in Neural Networks Emulating Physical Systems, Beucler et al. & DC3:  A learning method with hard constraints, Donti et al. 



Soft vs. Hard Constraining

Let ỹ be the target 

Soft constraining: The NN’s loss L is extended by additional terms

L(y,ỹ) := ||y-ỹ||² + λ Penalizer term

Hard constraining: Enforce constraints in additional network layer 
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Soft Constraints

L(x,y,ỹ) := ||y-ỹ||² + λ||h(x,y)||² + μ||ReLU(-g(x,y))||²

Equality constraints: Minimizing ||h(x,y)|| encourages the NN to output y, such that 
h(x,y) is close to 0

Inequality constraints: ReLU(z) = max(0, z), it sets the negative part to 0. 
Minimizing ||ReLU(-g(x,y))|| encourages the NN to output y, such that g(x,y) is 
positive

equality constraints inequality constraints



Hard Constraints

Equality constraints: Output partial set (y1, …, ym) and then calculate (ym+1, …, yn), 
such that h(x,y)=0

This process is called completion

Inequality constraints: If g(x,y)<0 then set y such that g(x, y) = 0

Example: Constraint is that y≥0. If yi <0 then set yi=0

This process is called correction
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Hard Constraints - Offline vs Online

Offline: 

Online: 
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Our Constraints

Mass conservation - Equality constraints
Let S=  SO4,DU,OC,BC   be the set of aerosol species. For every s∈S let Is be the indices 
of our output y corresponding to value of that species. Mass conservation is given by

∑i∈Is yi=0

Soft constraining: Add loss term ||∑i∈Is yi ||²

Hard constraining: Choose j∈Is and set yj:=-∑i∈Is\{j} yi



Our Constraints

Mass positivity - Inequality constraints

All predicted masses have to be positive. For our input x (masses at time 0) and our 
output y (change in mass), the constraint is

 yi+xi≥0

Soft constraining: Add loss term ||ReLU(-(yi+xi)||²

Hard constraining: Add correction layer yi=ReLU(yi+xi)-xi



Offline results



Results - Mass conservation

Hard-constrained NN satisfies mass conservation constraints 
completely, soft constraints slightly decrease mass violation

Constraints only very slightly decrease accuracy

Difference between online vs offline constraints small

Model Base 
NN

NN + mass 
loss
(soft-constr.)

NN + offl 
completion 
(hard-constr.)

NN + onl 
completion 
(hard-constr.)

R² 0.87 0.86 0.85 0.84

Overall Mass 
Violation

0.0015 0.00097 0 0



Results - Positivity

Hard-constrained NN satisfies positivity constraints completely, soft constraints 
decrease negative fraction, but not negative magnitude

Hard constraints do not decrease accuracy, soft do decrease

Difference between online vs offline constraints small

Model NN Base NN + 
Positivity Loss
(soft-constr.)

NN + offl. 
Correction
(hard-constr.)

NN + onl. 
Correction
(hard-constr.)

R² 0.87 0.68 0.87 0.86

Negative 
Fraction

0.20 0.15 0 0

Negative Mean 0.0016 0.0016 0 0



Results - Plots



Results - Speed-ups

Runtimes for the prediction of one global time step:

Model M7 NN pure GPU NN CPU-GPU-CPU NN CPU

Time (s) 5.781 0.000517 0.0897 2.042

Speed-up 1 11181.8 64.4 2.80



Integration in ICON



Fortran-Keras-Bridge

Use Fortran-Keras-Bridge (FKB) to integrate NN into ICON

[1] https://github.com/scientific-computing/FKB

2. Convert to 
Keras/Tenso
rflow h5 file 
format

1. 
Development 
+ training in 
PyTorch
Output: 
Weights file

3. Using FKB 
library to 
convert h5 
file to txt file

4. Replacing 
original M7  
function 
call in ICON 
with NN 
version 



Stability

Simulation easily unstable, if out-of-distribution samples appear - > important to include 
samples from all year, all times of day, all areas, all vertical levels in training data

Things that helped to achieve stable runs
● Retrain with all data (including training,validation and testing) to achieve stable 

runs
● Bigger NN
● Constraints such as soft mass and correction layers



Accuracy

Aerosol properties after a year of ICON-NN run vs reference run



Summary

Neural networks can accurately emulate aerosol microphysics model

We can incorporate physical constraints with hard constraining 

A significant speed-up, especially on a GPU can be achieved

Achieve stable and accurate online runs with the help of constraints

Online speed-up very small, due to batch size of 1



Future work

Speed-up of the emulator when coupled

- Library that supports bigger batch size
- Pruning methods to make NN smaller
- Setup where a GPU can be utilized (GPU version of ICON)



Thanks for your attention!

Contact: paula.harder@mila.quebec


