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Overview

• Aerosols have a substantial direct and indirect 

impact on Earth’s radiative budget and adequately 

modeling aerosol radiative effects is critical for 

accurate climate prediction

• Calculating the optical properties of aerosol 

populations is too computationally expensive to be 

done on the fly in climate models, so it is 

parameterized

• Here we develop a machine learning based 

parameterization for aerosol optical properties for 

use in E3SM that is significantly more accurate 

than the existing parameterization

• We leverage a random neural architecture search 

strategy to find a light-weight neural network 
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Background: Aerosol Direct Effects in E3SM

Aerosol Model 

(MAM4)

Represents many 

aerosol types in 4-

”modes” with assumed 

log-normal size 
distributions

Radiation Code 

(RRTMG)

Models how radiation 

propagates through 

the atmosphere, 

calculates resulting 
heating rates

Parameterized 

bulk aerosol 

optical 

properties

Energy Exascale 

Earth System Model 
(E3SM)

DOE climate model, 

simulates Earth’s 

atmosphere, land, ocean, 

ice etc.

(MAM4 and RRTMG are components of 

E3SM’s atmosphere model)
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Why Parameterize Aerosol Optics?

A substantial fraction of atmospheric aerosols scatter in the Mie 

regime (particle diameter ~ wavelength), where optical properties 
vary wildly as a function of particle size

To find an individual particle’s optical properties (extinction, 

absorption, and scattering efficiencies) requires a Mie solver. 
These codes are relatively slow. (solutions are infinite series that 

might require 10s-100s of terms for sufficient accuracy)

To find a population’s optical properties we need to numerically 

integrate particle optical properties over the population’s size 
distribution, which requires 100’s of calls to Mie code to do 

accurately

…and this needs to be repeated for each aerosol 
mode/wavelength combination
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How are Aerosol Optics Parameterized?

Inputs:

Real refractive index (within-mode mixing)

Imaginary refractive index (within-mode mixing)

Wavelength (14-SW, 16-LW)

Aerosol Mode

Mode radius (estimated from MAM,

defines size distribution)

Outputs:

Bulk absorption, extinction, and 

asymmetry parameter for SW.

Bulk absorption only for LW

Approach: Pre-compute bulk 

optical properties for different 
aerosol populations, look up at 

run time

Current method stores this 
information in a look-up table of 

Chebyshev coefficients

We will use a neural network
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Neural Network Based Parameterization

Approach:

• Replace the parameterization with an ANN

• Use Mie code to pre-compute exact solutions 

for possible inputs and create a training set

This problem is ideal for 

neural architecture search:

• We can generate unlimited training data

• The ANN needs to be as lightweight as 

possible

• Relatively small ANNs can train very quickly 

on CPU

Random Neural Networks:

• Random network graph

• Transfer functions

• Tensor merging operators

• Layer sizes

• Number of layers

• Based on concepts from Xie et al. 2019: “Exploring randomly 

wired neural networks for image recognition”
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Evaluating Random Networks

Want to find skillful neural 

networks with as few 

parameters as possible, this 

shows validation scores 

versus model size.

Points are random ANNs 

(trained 500 each for LW and 

SW)

Lines show performance of 

conventional ANNs trained 

between 2-6 layers, 10-

different parameter counts, 5-

trials for each (reporting the 

best) (250 total)

The best random ANNs get a ~20%-50% improvement over 

their conventional counterparts. 

Most of the randomly wired ANNs performed better (skip 

connections must be important for performance)
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Evaluating Random Networks

Test set: gridded over 

input domain, 2x size of 
training set

Even worst-case errors 

are small

Note:

SSA = Scat./Ext.

Abs. = Ext.-Scat.



9

* *

Parameterization Skill

Comparison of Mie code 

optical properties to 

parameterization on test 

dataset

Gray = joint histogram of 

existing parameterization

Red contour contains all 

ANN samples

Below: MAE comparison 

between ANNs and 

lookup table and 

interpolation based 

approach
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Adding core-shell optics

Existing parameterization assumes aerosol species are mixed within modes

Uses volume-weighted mixing of refractive indices

This is not always realistic – black carbon, for instance, can be coated by sulfate and a 

core-shell model is more reasonable than mixing:

Geiss, A., Ma, P.-L., Singh, B., and Hardin, J. C.: Emulating aerosol 

optics with randomly generated neural networks, Geosci. Model Dev., 

16, 2355–2370, https://doi.org/10.5194/gmd-16-2355-2023, 2023.
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Adding core-shell optics

Mixing assumptions can significantly alter the optical properties of a particle:

(This involved creating a Python 
core-shell Mie solver based on 

algorithms from Toon and 
Ackerman 1981, and Shiloah

2018)
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Improving generalizability

A general-purpose parameterization that works alongside other aerosol models and other choices of 

wavelength is preferable (not specific to MAM4), if model complexity isn’t increased too much

Mie calculations have a symmetry, they only depend on the size parameter x=2𝜋r/𝜆, I can re-formulate the 
above eqn and predict 𝜆ke instead as a function of 𝜎 (distribution width), m=n+ik (complex refractive 

index), and 𝜇x=2𝜋𝜇/𝜆 to eliminate an input variable

For large and small size parameters we can directly calculate Rayleigh and Geometric approximations 
and have support for all wavelengths and particle sizes
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Evaluating core-shell optics

Core-Shell Test Error %: 0.045Sphere Test Error %: 0.018

After training new neural networks using the random wiring method and the lower 

dimensional formulation of the problem, the test error remains negligible. 



Summary:

• The optical properties of aerosol populations can 

be very accurately represented by a neural 

network for use in an ESM

• Neural architecture search including wiring can 

find better performing ANNs

• We have developed ANNs that can solve a more 

generalized problem than the MAM4 

parameterization (SW and LW, range of PSDs) 

and represent core-shell optics

Ongoing Work:

• Currently working on integration into E3SM

• Collaboration with Laura Fierce, Peyton Beeler, 

and Rahul Zaveri to represent non-spherical black 

carbon
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Published paper:

https://gmd.copernicus.org/articles/1

6/2355/2023/

Emulating Aerosol 
Optical Properties 

Using Machine 
Learning

International Aerosol Modeling 
Algorithms Conference

Session 1: Machine Learning and Data Science

6th Dec 2023

Andrew Geiss, Po-Lun Ma, Balwinder
Singh, and Joseph C. Hardin

Pacific Northwest National Laboratory

Enabling Aerosol-cloud interactions at GLobal convection-
permitting scalES(EAGLES)

Contact: andrew.geiss@pnnl.gov

https://gmd.copernicus.org/articles/16/2355/2023/

